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XV. Imvariants, Covariants, and Quotient-Derivatives associated with Linear
Differential Equations.

By A. R. Forsyra, M. 4., F.R.S., Fellow of Trinity College, Cambridge.
Received January 7,—Read January 12, 1888.

THE present Memoir deals with a set of invariants and covariants of linear differential
equations of general order. The set is proved to be complete, that is to say, every
covariantive function of the same type can be expressed as a function of the members
of the set, the only operations necessary for this expression being purely algebraical
operations. The transformations, to which the differential equations are subjected,
are supposed to be the most general consistent with the maintenance of their order
and their linear character; they are, linear transformation of the dependent variable
and arbitrary transformations of the independent variable. The covariantive property
of the functions considered is constituted by the condition that, when the same
functions are formed for the transformed equation, they are equal to the functions for
the original equation, save as to a factor of the form (dz/dx)*, where z and « are the
two independent variables.

The memoir, with the exception of a single and rather important digression, is
occupied solely with investigations of the forms of the functions, of their interdepen-
dence, and of methods of construction. The earlier part deals chiefly with the
synthetic derivation of the functions, the later part with their analytic derivation.
Tables of the functions have not been calculated ; in most cases the expressions of
the functions are given in their forms as associated with the differential equation
when it is taken in an implicitly general canonical form, and only in very few cases
are functions given in connexion with an explicitly general form. Within these
limits the subject of the memoir has been strictly confined ; there is not, for instance,
any attempt at classification of differential equations of the same order as discrimi-
nated by forms and values of invariants or covariants.

The contents of the memoir are as follows :—

The first section gives references to previous writers on the subject, viz., CocKLE,
LacuerrE, Brioscur, MALET, and HALPHEN ; and, in particular, some of the results
obtained by HALPHEN in his well-known essay and in a subsequent memoir are stated.
It appears that previous results are confined to invariants, and that, with the
exception of two special invariants of the general equation, the invariants obtained
are not derived for equations of order higher than the fourth. In order to connect
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my results with those previously cbtained, there is given at the end of the section a
very short statement of the kinds of covariantive functions which are here introduced.

In the second section there are given the general relations between the coeflicients
of a linear equation before and after it is subjected to the most general transforma-
tion. From these relations the value of the invariant ®,is deduced; a method is
indicated which leads to the values of ®,, ®;, @, ®,; and it is proved that, for the
first general form of differential equation adopted, there are n — 2 fundamental
invariants, each of which consists of two parts:-—(i.) a part linear in the coeflicients
and their derivatives; (il.) a part, not linear, every term of which contains at least
one factor which is either the algebraic coefficient of the term next but one below the
highest in order in the differential equation, or is a derivative of that algebraic
coefficient. A canonical form of the differential equation is adopted, the reduction to
which is possible by the solution of an equation of the second order ; for this canonical
form the second part of each of the fundamental invariants vanishes. Finally, the
expression of these invariants in their canonical form is given.

In the third section two processes of deducing invariants from those already found
are obtained, called the quadriderivative and the Jacobian; and it is proved that all
the algebraically independent invariants which can be deduced by these processes may
be arranged in classes according to their degrees in the coefficients of the differential
equation. The first class is constituted by the n — 2 priminvariants of the second
section ; the second class contains n — 2 quadriderivatives of these priminvariants
and n — 3 independent Jacobians; and each succeeding class contains n — 2 proper
invariants. In the course of the section several propositions are proved which lead to
this selection of proper invariants.

In the fourth section it is shown, by the application of CLEBSCH'S theorems as to
the classes of . variables which arise in connexion with the concomitants of algebraical
quantics in any number of variables, that there are in all n — 2 dependent variables,
associated with the original dependent variable of the differential equation, and
distinet in character from one another. The complete set of 7 — 1 dependent
variables are subject to similar linear transformations ; and at the end of the section
some properties of the linear equations satisfied by them are inferred.

In the fifth section the quadriderivative and Jacobian processes are applied to the
dependent variables, original and associate, which possess the invariantive property ;
and it is proved that there are two classes of independent covariants, viz., those
which involve each one dependent variable and its derivatives only, and those which
are Jacobians of a single invariant and each of the dependent variables in turn. A
limitation on the former class, according as they are considered associated with a
differential equation or a differential quantic, is pointed out; and a symbolical
differential expression is obtained for each of the proper derived invariants and
derived covariants.

In the sixth section some illustrations of the theorems already proved are given,
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by applying them to equations of the lowest orders. When they are applied to the
equation of the second order, they give the theorems already obtained by KummEer
and ScEWARz. When they are applied to the equation of the third order, the
canonical form of which is binomial and which has a single priminvariant, the adjoint
equation is derived ; and the case of a vanishing priminvariant is discussed from two
points of view. The quotient-equation of the cubic, that is, the differential equation
satisfied by the quotient of two linearly independent solutions of the cubic, is worked
out; and the primitive of the cubic is deduced from a supposed knowledge of two
special solutions of this quotient-equation, in a form which is the analogue of the
corresponding results for the quadratic. In this connexion the cubic quotient-
derivative occurs, corresponding to the Schwarzian derivative ; it is one of a series of
similar functions. For the equation of the fourth order two canonical forms are given,
one being the special case of the general canonical form, the other being a more direct
analogue of the canonical form of an algebraic binary quartic. The quotient-equation
is deduced and some properties are proved; and the quartic quotient-derivative is
obtained. Finally, the two associate equations of the quartic are given; and there
is a verification that all the priminvariants (and hence all the concomitants) of these
associate equations are expressible in terms of the invariants (and hence of the
covariants) of the quartic.

The seventh section is really a digression from the main subject of the memoir;
some of the properties of the quotient-derivatives of odd order are therein investigated,
the two principal relations being that which is consequent on the general quotient
transformation of the dependent and the independent variables, and that which gives
the homographic transformation of both variables. These quotient-derivatives have
some connexion with reciprocants ; but, on account of the restriction on the subject
of the memoir, there is here no investigation of that connexion. Quotient-derivatives
of even order are obtained from different forms of linear equations; and a relation
between the two kinds of derivatives is indicated.

The eighth and last section is mainly devoted to a proof of the functional com-
pleteness of the concomitants of the second, third, and fifth sections. There is a
homographic transformation of the independent variable, which changes one canonical
form into another ; and the method of infinitesimal variation is used in connexion
with this transformation to obtain the characteristic linear partial differential equations
satisfied by any concomitant. They are found to be two in number ; one of them is
an equation which determines the form of a concomitant, the other determines the
index of the concomitant when its form is known. These characteristic equations
are first applied to deduce the covariants which involve the original variable,
and next to deduce the invariants derived from ®;; and simplified forms of the
invariants and covariants of higher grade are obtained. Finally, there is given a
general proof, founded on the theory of linear partial differential equations,® that

* This method has already been applied by Mr. HAMMOND to the corresponding proposition in the
theory of binary quantics ; see ¢ Amer. Journ. Math.,” vol. 5, 1882, pp. 218-227.
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every concomitant can be expressed as an algebraical function of the concomitants
which have already been obtained, and that their aggregate is therefore functionally
complete.
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SECTION L

HisroricAL INTRODUCTION.

1. Similarity in properties of differential equations and of algebraical equations
has long been of great value, both in the development of the theery and in the
indication of methods of practical solution of the former equations. In recent years a
great extension of this similarity has been made by the discovery of certain functions
associated with linear differential equations which are analogous to the invariants of
algebraical quantics; and, principally owing to the investigations of M. HALPHEN,
this extension has had an important influence on the theory of cubic and quartic
equations and on the recognition of fresh integrable forms of equations.

2. The most general modification of the form of an algebraical equation, without
causing any change in its order, is that which arises by the application of TscHIRN-
HAUSEN'S transformation; the effect of it is that, by the satisfaction of certain
subsidiary equations, the coefficients of terms in the transformed equation are
evanescent, and these terms are therefore annihilated. There exist in the trans-
forming relation a number of constants, taken in the first instance to be arbitrary,
and subsequently determined by the subsidiary equations, which, however, do not in
cases of high order always admit of possible algebraical solution; and the two
simplest cases are those in which the transforming relation is lineo-linear and lineo-
quadratic.

Now, in the case of linear differential equations, transformed without change of
order, there is an exact analogue of the lineo-linear relation just mentioned, whereby
the term involving the differential coefficient of order next to the highest is made to
disappear. If x and y denote the independent and the dependent variables respec-
tively, the relation is of the form

y = uf(x) = ul,

where % is a new dependent variable and \ is determined by an equation of the first
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order. The analogue of the lineo-quadratic relation apparently does not exist ; but
another equally effective transformation of the differential equation is possible, being
that whereby the independent variable is changed. And, by a proper transformation
to a new variable z, concurrently with the former change of the dependent variable,
though with a different multiplier f(x), it"is possible to remove the terms which
involve the two differential coeflicients of order next below the highest which occurs,
This has been known for some time, having been pointed out, first apparently (in
~ 1876) by CockLE, and afterwards (in 1879), independently, by LAGUERRE.

3. Here would seem to be the limit in this regard to the analogy between alge-
braical and differential equations; but within the limit there are striking properties
in common. It is well known that when the proper lineo-linear transformation is
applied to an algebraical equation so as to remove the term next to the highest, the
remaining coefficients are the algebraical coefficients of the leading terms of HERMITE’S
covariants associated with the quantic which is the sinister of the equation; and
these coefficients are therefore seminvariants. An exactly similar property holds for
differential equations, but its full recognition has only been gradual. The following
are, so far as I can discover, the chief references to this part of the subject, and,
though a chronological order is avoided, they will serve to indicate the development.

4. In a memoir entitled “On a Class of Invariants,” * Professor MALET obtained,
and applied to the solution of special questions connected with the cubic and quartic,
two classes of seminvariants of differential equations ; one of these is invariantive
for change of the dependent variable, the other for change of the independent
variable. And though, to obtain the form of the latter he has used the two kinds of
transformation successively, he has not apparently obtained in a direct form functions
which possess the invariantive property for both transformations. Soon after the
appearance of this paper, and in connexion with it, Mr. HARLEYt proved that
Professor MALET had been anticipated by Sir James CockirE, who had in several
memoirs (exact references are given by Mr. HARLEY) given in forms, sometimes
explicit and sometimes implicit, the leading results obtained by Professor MaLET
relating to the seminvariants of the two classes. At the end of his paper Mr. HARLEY
states that, in a recent letter, Sir JamEs CockLE had suggested the possibility of
forming ¢ ultra-critical” functions, s.e., functions invariantive for both transformations
effected concurrently.

5. In this last suggestion, which is not stated to have been worked out to a definite
issue, Sir James CockLE has been anticipated by M. LAGUERRE, who in two notes}
gave what is here called the fundamental invariant of the cubic, but without any

* ¢ Phil Trans.,” 1882, pp. 751-776.

+ ¢ Professor MaLer’s Classes of Invariants identified with Sir James CockrLr’s Criticoids,” ¢ Roy. Soec.
Proc.,” vol. 38, 1884, pp. 44-57.

1 “Sur les équations différentielles linéaires du troisiéme ordre,” ¢ Comptes Rendus,” vol. 88, 1879,
pp. 116-119: “ Sur quelques invariants des équations différenticlles linéaires,” ibid., pp. 224-227.
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indication of his method of obtaining it ; he also gave the first of the two classes of
seminvariants. Almost immediately after the appearance of these notes Professor
BrioscHI communicated in a letter * to M. LAGUERRE a method of obtaining the
invariantive results and of extending them, which, applied to the cubic and quartic,
led to explicit expressions for the invariants of both equations; and the invariantive
property of the functions is constituted by the relation that if' ¢ (p, dp/dx, ...) be
the function for the original equation with coefficients p, and ¢ (g, dg/dz, ...) be
the same function for the transformed equation with coefficients ¢, an equation of the
form

() 4@ =s@g)

is satisfied. There is a premature conclusion as to the permanence of form of these
functions for equations of all orders, the corrected expression of which is given later
in the present memoir (§ 28).

6. The two notes of M. LAGUERRE and the letter of Professor Brioscur are the
suggestive starting point of M. HALPHEN'S investigations in invariants, which occupy
part of his extremely valuable memoir.t So far as the invariants, qua theory of
forms, are concerned, the leading investigations are contained in the third chapter.
He there points out the functional identity of the invariants of LAGUERRE and
Brioscmr with functions previously (in July, 1878) obtained by himself]; the
connexion between absolute and relative invariants is derived o prior:; and the
necessary limitation on the form of invariants arising from homogeneity in weight is
deduced. A method is indicated, potentially suitable for the formation of invariants,
by connecting the general linear equation with the linear equation of the second
order ; the fundamental invariant of weight 8—the same as for the cubic—is derived
and its permanence of form for equations of all orders is pointed out ; but, except this
and the invariant of weight 4 for the quartic, no others are calculated. In fact, the
method involves extremely difficult analysis for any but the simplest cases; and even
for the invariant of weight 3 an invariantive property of LAGRANGES © équation
adjointe” is used in addition. The rest of the memoir is devoted to the application
of these results. For this purpose, the author takes his general differential equation
in a definite canonical form so chosen that the term of order next to the highest does
not, appear and the invariant of weight 3 is unity—two relations which suffice to
determine the new independent variable and the multiplier of the dependent variable.
The applications, leading to most important deductions, chiefly concern the general

* ¢« Sur les équations différentielles lindaires,” ¢ Bulletin de la Société Mathémat. de France,’ vol. 7,
1879, pp. 105-108.

T “Mémoire sur la réduction des équations différentielles linéaires aux formes intégrables.” ¢ Mémoires
des Savants Ktrangers,’ vol. 28, No. 1, 301 pp. (Grand Priz des Sciences Mathématiques, année 1880;
published 1882).

I In his Doctor’s Thesis ¢ Sur les invariants différentiels.” Paris, 1878.
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cubic and a limited form of the quartic for which the invariant of weight 3 vanishes
identically, and in the case of which the new independent variable is determined by
taking the fundamental invariant of weight 4 to be unity; in the notatlon of this
memoir such a quartic would assume the binomial form
4,
% 4+ B8u = 0.

7. In a subsequent memoir,* M. HALPHEN considers the general quartic and its
invariants, which he identifies (p. 330, l.c.) with the differential invariants of tortuous
curves. And he dedaces (p. 339, lc.) from the two fundamental invariants
(v, s, = @, ®,, in my notation to a numerical factor prés) the series of successive
invariants, which are the successive * Jacobian derivatives” herein obtained.

The following investigations were completed before I knew any of the details of
this last-quoted memoir by M. HALPHEN, my starting point having been M. BrioscHI'S
letter ; and, though the results relating to the form of the Jacobian series for the
quartic are thus anticipated by four years, it does not seem necessary to modify the
investigations which relate to the equation of general order n possessing n — 2
fundamental invariants.

8. The great advantage of the canonical form chosen by M. HALPHEN is that a
given equation can be reduced to it by means of differential equations of soluble
form of the first order only—that is, their dependent variables can be explicitly deter-
mined as functions of the independent variable, though the functions may not be
evaluable in known forms ; but there is an attendant disadvantage from the point of
view of the invariants that their expressions, even for the canonical form, remain
complicated. In preference to M. HALPHEN’s canonical form I choose that from
which the two terms of order next to the highest are absent, and the reduction to
which is always possible by the solution of a linear differential equation of the second
order. The great advantage of this, as the canonical form, is that, when the invariants
—at first called fundamental and subsequently priminvariants on account of the
property about to be mentioned—are constructed for this form, they are purely linear
functions of its coefficients and their derivatives, with the further essential property
that the expression of each is independent of the order of the equation, so that, in
fact, each is an invariant of every equation of order not less than its index.

9. The number of these priminvariantsis n — 2; from them there are constructed
the series of what have been called derived invariants, which include Jacobian and
quadriderivative functions; and in the aggregate only those are retained which are
proper or non-composite. All these functions are entitied invariants. -

There is then indicated a set of dependent variables associated with the dependeént
variable of the given equation, the last one of which set is the variable in the

* ¢ Sur les invariants des équat.ons différentielles linéaires du quatriéme ordre.” ° Acta Math.,” vol. 3,
1883, pp. 325-380.

MDCCCLXXXVIIL.—A. 3D
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“équation adjointe” of LAGRANGE; they are all transformable by a substitution
similar to that which transforms the original dependent variable, viz., multiplication
by some power of dz/dx ; and they possess the property that all combinations of thern,
similar to those by which they are constructed, are expressible explicitly in terms of
variables of the set. From this set of dependent variables there are deduced functions
of them and their differential coefficients possessing the invariantive property ; aund,
again, from the aggregate all composite functions are excluded These functions are
entitled identical covariants.

Finally there is obtained a third class of functions possessing the invariantive
property, and involving in their expressions the dependent variables and the
coeflicients of the differential equation; and those functions are excluded from the
aggregate, which can be algebraically compounded by means of functions occurring
earlier in the class, of invariants, and of identical covariants. These functions are
entitled mixed covariants.

For purposes of simplicity and of distinction between these classes of functions
there is an advantage in considering, as the ground form, a differential quantic
(being the sinister of the differential equation) rather than the differential equation
itself ; for, in the case of identical covariants of order equal to and greater than that
of the equation satisfied by the variable in question, they can by means of the
equation be changed into mixed covariants. It is necessary to mention this both
here and later when the functions occur; but, beyond this mention, further notlce is
not taken of the possible fusion of the two classes of functions.

10. The general aggregate of concomitants of the differential equation is taken as
including these three classes of functions, and later in the memoir it is shown to be
complete ; and the expression of every function is only implicitly general, that is, it is
given in connexion with the canonical form of the equation. A few of the prim-
invariants of lowest index are given for a semi-canonical form, but these are the only
exceptions. Again, my aim has been the investigation of invariantive forms from the
purely algebraical or functional point of view, and not from the geometrical ; I have
nowhere in this part adverted to SyYLvEsTER'S Reciprocants. The identity of some
classes of the latter with HarLpmEN's Differential Invariants is known*, and thus the
three species of covariantive functions constituted by Differential Invariants, Recipro-
cants, and Invariants of Differential Quantics have known points of connexion.
The discovery of further relations between them would be of great interest and
value.

* Svyrvestir, “ On the Method of Reciprocants as containing an exhaustive theory of the Singularities
of Curves,” ¢ Nature,” vol. 33, 1886, p. 227.
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SECTION II.
PRIMINVARIANTS OF A LINEAR DIFFERENTIAL EQUATION.

Transformation of the Differential Equation.

11. The general linear differential equation of the n't order is of the form

ar-1Y —1 ar—?Y
0=R, 22 4nr, T3 422D g, I

where Ry, R}, R,, . . . are functions of = ; by the substitution

and subsequent division throughout by Ry, it is changed to

dry 7! dr=y n ! , a3y : .
O—d% 2in — 21 gdx"“2+:‘ﬂn-—-3' 3dac”‘3+ PRy o )
where P,, P, . . . are seminvariants of the former equation.

Similarly, an equation which determines another dependent variable u as a function
of another independent variable z may be written in the form

aru n! a2y

n! ar3u ..
d_z-" 219 — 2,Q2 dzﬂug+3!n_3; Qs da=3 +. +Q,,u. . e (l_l.)

0=

Suppose now that these dependent variables are so connected that the relation
y=uh . . . . . . . .. (1

is satisfied, N being some function of . In order that (i) may be transformable into
(ii.), z must be some function of « ; and when this is the case there will be a number of
equations, evidently n in number, connecting M, 2, x, and the two sets of coefficients
P and Q, which may be obtained as follows. The actual substitution of w\ for y
in (1) gives

aru u an dr 1y n! AP\ dr 2y

da? At dz dar—! + 21n — 2! da? dar- 2+' ©e

e Bt a= S T

21n —
3n 2

0=
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In this equation it is necessary to change the independent variable from z to x, in
order to compare it with (ii). We have*

dm% —_ s=méi”3§ @
dam 5oy §1 Az’
where
‘ 3 - d,n
Am,s = lelt, when p= 0, of d;;b {(]5(93 4+ P) _ <;[) (x)}*

and

p=¢@) . . (2

It at once follows thét, writing m ! C,,, for A, , and denoting differential coefficients
sometimes by dashes (chiefly when there are powers higher than unity) and sometimes
by Roman numeral indices, we have

C,s= %{ = coefficient of p” in {¢ (= + p) — ¢ (x)}*
i.e.,' in (p¢' + Hp°d" + 3¢+ ..y . (3)

Substituting now in the semi-transformed equation, we immediately find the
coefficient of du/dz* + s! to be A '

an ntl  Bn o, nl  dra
=Mk n g bt g —gige dme e I T e A

: dn — 21 s
Forr g P Macast (0= 2) T A ) A }+,

slm —s — 21 dan—s—2""58

r=§—-s n! P t=n—r—8 n-—r!" th‘A

rmo TN —17! '{ i=o tlm—r—t!ds "“r“{’s}
r=§——s t=n§'r-s , n! 7 P A_ /2N

- .20 D pletn —p — g1 7= g

with the symbolical interpretations P, = 1, P, = 0. But the present form of the
equation must be effectively the same as (ii.), and the coefficients of corresponding
derivatives of u must therefore be proportional to one another. In the transformed
equation the coefficient of dmu/dz* =+ n ! is (here s =n, so that » =0 and ¢ = 0 are
the only values for terms in the summaticn) A, ,\, or the coefficient of dru/dz" is
A, .\/nt; thatis, it is A2 Hence we have '

w! , n—gt=n—r—3s n! AN
T Qn-.s )\zn = ; T% 2 {'_——‘_— Pr An—r—-i,s g—m"}’

slm—s! rlEln —p — i

Cx éCHLﬁﬁILGH, ¢ Vorlesungen iiber einzelne Theile der hoheren Analysis * (8¢ Auflage, 1879), p. 5.
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or, what is the same thing,

}Qn«s 7'n r=§—st=n—r—-s P An-r ts @

=0 t=‘0 rlln —r—1t! dat
Now, let
AN ! 17N ‘
o= g T e a1 e gt oo HPA
‘]
—_—(1,0,P2,...,P9)<35,1>)\. 7

symbolically, then the coefficient of
An —r—1,8

n—r—t!

in the foregoing expression is
s P, din
rit! daf

the summation extending to those values of r and ¢ that leave r -+ ¢ the same
throughout, that is, the coefficient is o

Wose

P+ ¢!
and, therefore,

—_—

Mhos gy 737 Aunes Wo,
n—s! o=0 n—0'10!

When s is changed into n — s and the quantities C are introduced from (3), this
takes the form

S—!Z -":-ofocn_g,n_saw e e e e e e (111)

It it were desirable the summation on the right-hand side might be extended to the
value § = n, for C,, ,» vanishes if m < m/.

12. The only place where, as yet, the zero value of P, has been admitted is in the
definition of W,, but no essential use of that value has been made ; now, however, it
will be found that the removal of the terms involving P, and Q, from (i.) and (ii.)
materially simplifies the analysis. Writing (iil.) in detail for the lowest values
of s and using the condition Q; = 0, we have in succession

= WOO”. n—1 + WIOﬂ_l’ n—1 . . . . . . . . . -. . . . (5)1,
Q= Wlhaes b Wilipams b g Willuras - - -« o o . (B),
A :
57 Qs =WConos + WiChp s 3 WiCiogams + 53 Wilhgurs -« (7))

and so on, the number of equations being .
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- 18. The first envariant.—In the particular cases of n = 3 and n = 4, BrioscHI has
shown (/. c. § 5) that there is a function of the coefficients such that

Wy _90.) % = 3%

remarking that the invariantive forms remain the same.for differential equations of
higher order; and HALPHEN has, for the general equation, obtained this invariant by
another process. Before passing to more general investigations it is easy to see that
this result follows from equations (5), (6),, (7)'; and the deduction of it requires
modifications of those equations which are subsequently of great use. We have,
from (4),

Wy=\M , W, =\;
and from (3)

Cho1=5m—1)2""%" , C,_, .y =2""},
while, generally,
C,n=12";

so that (5)! now is

0=zN+i(n—1)N" . . . . . . . . (5),

an integrated form of which will be subsequently taken. Writing with Br1oscu1

” 2 W
%zz—;_oz_li N )R

we have

' =17 Z,

M= (L 4+ 7,

=7 (L' + 3LL + Z%);

N =—%(n—-1)\Z,

N = —d = DN Z =} (=),

Ni= — 3 (n—1N{Z' —3(n—1)2Z + L (n—10Z}.
Again,

Il

Oy wmg = g (0 — 2) 27=4 {477 + 3 (n — 8) 2"}
‘ L (n— 2) 22 {47 + (3n — 5) £%};

24
Cn—ls g = '% (n - 2) 78y = «% (n — 2) o/n=2 Z’

i

by means of which (6)! changes to
INQ, = (n —2) {4Z' + (83n — 5) Z2} + 3 (n — 2) ZN + & (M + Py,

which, on substitution for A" and X/, reduces to

oL — 72 =

12 ,
S1(P=QeY) (O

n
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Similarly
Coy oy = 25 (n— 3) 20 {24'2’4” + 4 (n —4) Z2% 4 (n — 4) (n — 5) 23}
= i (0 —3) 2" 73 42Z" 4 (4n — 10) ZZ' 4 (n* — 5n + 6) Z°} ;
Cucpy uog = gy (0 — 3) 275 f427 4 3 (n— 4) 2"}
= gy (n—38) 2" 3 {4Z' + (31 — 8) Z*};
Cicgpneg=3%m—=23)""*2" =L (n—3) "3 Z

By means of these (7)! changes to

FMTQ =45 (0 — BN {227 + (4n — 10) ZZ" + (#* — 5n + 6) 27}
(0= ) (42 4 (30— 8) 2N+ L (0 — 3 Z( + P
+ F (N 4 3P\ + Py)),

reducing on substitution for A, \”, X to

7’ /4 7 43 ’ 12

Equations (6) and (7) agree with the equations given by Brroscmr for the case of
the cubic (n = 3) and that of the quartic (n = 4); the elimination of Z between them
is in process precisely similar to that in those special cases, and it leads to the result

(9% — 0} =5 % — 2m,

14, Tt appears from this investigation and from the results of Brioscmr and
HarpHEN that there are rational integral functions of the coeflicients of the diffe-
rential equation and their derivatives such that, when the same function is formed
for the transformed differential equation, the two functions are equal save as to an
integral positive power of 2. These functions are called invariants; the exponent of
the power of 2’ may be called the wndex of the invariant.

Dimension-Number ; Homogeneity.

15. The index of an invariant can easily be settled by the following considerations.
We can assign to each coefficient of the ditferential equation a certain number, called
for this purpose its dimension-number, suggested by the similarity with the theory of
dimensions of homogeneous functions.* For the present the dependent variable y will

* This process is practically identical with M. Hanruun’s assignation of weight; see above, Historical
Introduction, § 6.
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not have a definite number assigued to it, but will have associated with it an arbitrary
number m ; to dy/dx we assign a number m — 1, to d*/da? a number m — 2, and so
on up to d*y/dx", to which m — n is assigned. Now, if to P, we assign a number — 7,
the number assignable to P, d"~"y/da*~"ism — (n — r) + (— r) = m — n, and is,
therefore, the same for all values of 7, 7.e., for all terms in the differential equation ;
and, consistently with these arrangements, the number to be assigned to d7P,/dx?
18 —p—rn

In exactly the same way and by the same rules we can similarly assign numbers to
the coefficients Q and derivatives of these coeflicients, and, as before, leave the number
assigned to the dependent variable arbitrary.

16. If now an invariantive function of the kind spoken of in the last paragraph be
denoted by © (x) when formed from the coefficients P, and therefore by © (z) when
formed from the coefficients @, the invariantive relation is of the form

0 () 2'* = O (x).

An equation of this form can exist only if
(i.) Every term on one side has, according to the foregoing assignation of numbers,
one and the same dimension-number, and similarly for every term on the
other side ; and
(ii.) The two sides have the same dimension-number for the variable z, and the
same dimension-number for the variable z.

The first of these conditions requires a certain kind of homogeneity in the function
0, examples of which will immediately be given; the second of the conditions
determines the index p. For let — o be the dimension-number of © (x), which may
be written O, (x); then — o is also the dimension-number of ®, (z), these two
numbers being respective multiples of the units implicitly assigned to  and 2 respec-
tively. Consistently with the assignation of dimension-numbers, the quantity 2" must
be considered as having a number + 1 assigned to it in virtue of its dependence on z
and a number — 1 assigned to it in virtue of its dependence on x. Hence the
2-dimension-number of @, (z) z™* is u — o, and its #-dimension-number is — p, while
the corresponding numbers of ®, (x) are respectively 0 and — o  The second of the
conditions requires

p—o=0,

both of which are satisfied by w = ¢. Hence the invariantive functions are such that
0, (2) 2" = @, (x),

where 0, () is a function of the coeflicients P and their derivatives such that every
term in the function has one and the same dimension-number — o
17. The following examples will illustrate these general explanations. The quan-
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tities which have a dimension-number — 38 are Py and dP,/dx, and therefore the

general form of ®; is
d

P,
AP+ B2,

(the coeflicients A, . . . being constants throughout); those which have a dimension-
number — 4 are P,, dP;/dx, d*P,/dxz?, P,?, and therefore the general form of 8, is

dPy &Py 9.
AP+ B2+ €22 4+ DP;

those which have a dimension-number — 5 are P, dP,/dx, d*P,/dx?, d*P,/dx?,
P,P;, and P, dP,/dx, and therefore the general form of ®; is

&Py
da?

3 5
AP+ B4 0L 4 D2 PP, 4+ PP, T2
and so on.

18. It is evident that the product of two functions ®,, ®,, is a function of the type
0,.,~ A composite function of this kind, resoluble into the product of two functions
with lower indices, will not be considered as properly associated with the dimension-
number — (o + o’). . The functions will be supposed ranged in order with increasing
index, and a composite function may thus be considered as included in the aggregate
of earlier functions. The method of determination of the invariants ®, will appear to
be practically founded on the solution of a partial differential equation of the first
order, as is usual with all invariantive functions of any nature; and, as would be
expected when the most general possible form of @, is adopted so as to determine the
assumed constants, composite functions of index p will occur associated with undeter-
minable arbitrary constants. For simplicity of calculation, it would therefore appear
desirable to exclude from ®, all terms which occur disjunctively in the aggregate
0,0,_,, but owing to the form of the implicit partial differential equation to be
satisfied this is not completely possible ; what proves to be possible, as will be seen
later, for the adequate determination of a non-composite function @, is that terms

o dg T e T T de

and terms, of course, of the dimension-number — p, involving as factors either P, or
some derivative of P, or combinations of them, alone need be considered.

We now proceed to what is practically the formation of the partial differential
equation, deriving it by a generalisation of the ordinary method of infinitesimal
variation which is used to obtain the characteristic- differential equations satisfied by
concomitants of algebraical quantics. The general characteristic equation is not
explicitly given on account of its complicated form ; it is implicitly given in all the
particular cases, and its principal use is to obtain the numerical coeflicients of the
different functions ©.

MDCCCLXXXVIIL.—A. 3 E
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Modification of the Coefficient Relations (I11.).

19. By integration of equation (5), we have
N 0= — constant ;

since the equations (iii) are homogeneous in the dimensions of A, this constant may
be taken of any arbitrary value other than zero, and so we may write

A0 = 1
A=7Re=D ()
With the form of equation (ii) adopted, this is the only equation which helps to

determine A and z ; and therefore we may consider z as arbitrary and, when an arbitrary
value is assigned, A is determinate. We therefore assume

r=x4ew, . . . . . . . . . . (9

where ¢, an infinitesimal constant, is to be considered so small that squares and higher
powers may be neglected, and w is an arbitrary non-constant function of #*. From this
it at once follows that

F=14e, . . . . . . . . . . (10)
and, for values of £ greater than unity,
dre _ dip
dat = Cdgt
while from (10) and (iv) it follows that
A=1—=1(n—1)e, oo (1
and
PN d
= (n—1)e T
Hence
dr
Wy=A=1—=%(n—1)e; Wl:ji—__,_%<n_1)q‘”;

and by (4), for values of » greater than unity,
1 : a .\
W, =P, —4(n—1)e(1,0,P,..., 07 1)
=P, —1(n—1)cT,
say. Also by (3) we have
* The functions are shown by this process to be invariants only for an infinitesimal, but otherwise
perfectly general, transformation ; but the immediate purpose is to obtain the numerical coeflicients and

not to prove the property of general invariance, which, otherwise known, could be derived by the
principle of cumulative variations.
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C,., = coeflicient of p™in (pz' + &, p%" + 3, p%" +. .. )

2] 29 {P+€(P,U' +2 PH/ +' p3 m+ ')}s

= . R G A I o Y T o ) Tk S

and therefore

Cs=1 + seul,
while for values of m greater than s

C _ se dm—s+],/.b
T — s 4 1) damst1”

When all these values are substituted in (iii.), it becomes

1+ 2(n+1)e,wQ 1JC_@:;5_)£/’:${P_%(%_1)€T}
s 5! : ,3
f=s5—1 PO ds:ﬁlll'
"f(”"s)e Do Bl 0 1t dwoon
1 (n—1)e Py &=y
=;_IP3_%———— T+(7)—8)€26'8_0+1yd$.§ o410

and, therefore, dividing each side by the coeflicient of Q, and retaining only first
powers of ¢, we have

s! ds=0+1y
001s— 0+ 11" % dg—o+1”’

=P, {1 —1(n+4+1)eui} — % (n— 1) T, —l—(n—s)eE

=P, (1 — seul)

s—@+1

1 0=s5—1 s d o
—1"3 {e,sm{n( 0—1)+s+e-1}1>,,dx3_0+1}, . (12)

after a slight reduction. This equation is true for the values s=2,3,...,n; and
particular cases, to be used immediately, are

Qe =Py (1 — 2eu)) — §(n + 1) ¥,
Qs = P3 (1 — 3ep’) — 8eu'Py— F (n + 1) e,
Q= P, (1 — depl) — 6euiPy — (1 + 5) uPy — 35 (n + 1) e,
Qs =Ps (1 — 5ep) — 10epPy — § (n + 7) Py — 3 (n + 3) eu™Py — 5 (n + 1) en,
Qo= Py (1 — 6epl) — 15eu Py — 5 (n + 9) euliP, — 5 (n + 4) eu™Py

— 3 Bn+ 7)euPy — P (n+ 1) en,
Q; =P, (1 — 7ep)) — 21epiPy — I (n + 11)epPy — 22 (n + 5) euP,

._l_ (71 -+ 3) €[.LVP3 -7 (n + 2) G’u,vin — ig- (n + 1) E/LViii.
S E 2
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20. But for our present purpose we require, not merely the expressions (12) for the
coeflicients Q in terms of P, but also expressions for the derivatives of different orders
of the quantities Q. Writing (12) in the form

QS = PS - G(I)Ss

so that we may, to the order of small quantities retained, differentiate ®, with regard
to z or  indifferently, we have

drQ drP, drd,

T dr T € e
But as before (§ 11) we have

Ol”Ps _ mar Br, m des
dr T2 m dam
where
. 9, 3 m
%—;5‘ = coefficient of p" in {p% + ‘2‘1“,,02%5 + %P?’g;f + } :
Now we have
dax 1
T LT
d*z ’r
a2? = T
that is,
d*x /s
’L:Z'; — — GlJ.

to the first order of small quantities, and similarly for the differential coefficients ot
higher orders ; whence

Bin . . . i
= coefficient of p" in {p — e(pp' + 5 " + % P+ . . . )},

r!

and, therefore,
B,., -,
=TT

while, for values of r greater than m,

Br,m em da'——m+1l1’ )

P! r—m + 1! c?x’"mﬂ
When these values are substituted, the equation for d'P,/dz" becomes

drPs ; drPs m=7r-—1 r! des dr—m+1ll’ .
der (L —7rep) dor € mé;.l m—1tr —m + 11 dam dar—m+1’
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and, therefore,

CZ"____Q‘;__OZP ( P m= 1——1 r! de dr—-m+1
dr = dw WP em L m—1le —m + 11 do» dar-m+1

U s dr=0+1y
AR [e}"‘;:‘g;ﬁ {n(s—0—1)+s+0—1}7 ( o 9)]

»+1

dP, o i
=W{1-—-('r+s)ep,} -—SePS@:r—]—

m=7=—-1 e de; m 1
—e > [47@’7'—m+1'{8(7n+1)—m(8—1)} dam dar— m“:l

m=1

—1y l:e,s__s;+1,{n(s 0—1)+s+0-13 2 (0,0 M)](m)

It will be noticed that the coefficient of the first term is 1 — (4 s)eul. The
quantity d'Q,/dz, which has a dimension number — (r + s), will be multiplied by 2’7 **
in the invariantive equation, t.e., by 1 4 (r 4+ s) eu' ; and the first term in the product
of the two will thus be d'P,/da’. The correctness of this result furnishes a slight
indirect verification of (13). ‘

As particular examples of (13), corresponding to those of (12), we have

dQ2 dPQ ii 1 iv
— = (1 — 3eul) — 2eulPy — & (n 4+ 1) eu,
#Q, &P, ,
T2 = g (L de) Py — & (0 + 1) e,

dSQ | &*P ii P 111 iv vi

dz; dm32 (1 — 5epl) — 9e,u, — Tew —d— —2epPy — §(n + 1) e,

d*Q d*P, i P 4 &P, i P v : vii
Tt = g (L 6epl) — Ldepli 72 — 16euil 22 — 9epl' = * — 2eu'Py — 5 (4 1) e,
ahQ d°P ; 4 &P 5 &P PP,y dp,

T = e (L TeW) = 2098 550 — B0qu R — 2Beu T, — ety

— 2eu P, — & (n + 1) euit;
Db = T (1 gei) — BewiPy — 8¢ L (WPy) L (n1)ew,

*Q a’P n iii i 1
E;fzdx23(1—5€y)—7ey —3e,uP —36W(MP)——(W+1)€MV

d3Q d3P i i d2P= iii dp, i
dz33 = Ex—; (1 — 6ep') — 12¢p Ex_; — 10ep ;7; — 3ep" Py

a3, .
3¢ s (°Ps) — 1 (n+ 1 )™
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d* a*p, 3P d9 P al,
dii = 3(1 -— 7elu,) - 186;1, =3 — 22eu™ I 13ep, % — Ben' Py
&ﬁ (WP = (0 1) e
aQ, dP
_d—j 4(1 — Sep') — 4P, — € {GP o (7 4 5) pi P} — 55 (n 4+ 1) en”,
sz dQP i iidP iti @ ii iii r
s = s (L— 6ep’) — 9ep™— * — dep" Py — e - {6p" Py + (1 + 5) p" Py}
» — 25 (n4 1),

@ d? a2 > )
d% = P4(1 — 76’.L) - 15(—:;» —P — 13eu’ %I; — 4eu P,

—_ ng‘g {leng‘_,_ (%_i_ 5)'%1111)2} — _W (,n+ ].)el.bvm .
aQ

1Q ap

—c_l;é 5(1 — bep') — Heu' Py — ed $S10p" P, + 5 (n + 7) p" Pyt § (n 4+ 3) uV Py}
-3 (n + 1) en™,

o, _ 2

d#

P (1 — 76[1,) b 11€‘u, 7d—) — 56’1‘“1]?
65‘;2 S10p'P, + 2 (n + 7)p" Py 4 §(n + 3) " Py} — 3 (n 4 1) en™ ;

aQ dp i i d i : iii
’65;61";1;6(1 — Tep') — Gep. Pe“ed_m{w.“ Py+ & (n+9)pn"P,

+ 5 (n+ ) p"Py+ £ (30 + T) TP} — S (n 4 1) ep™.

21. We now proceed to construct the functions @,, 8;, 8, 8, ; the value of ®; has
already (§ 13) been found, and may ke taken in the form

O,=P,—3%2 . (14)

Caleulation of the Invariants @, O, Oy O, O,

22. The wnvariant ©,,
The most general form possible is

0, = AP, + B> +odPﬂ+DP2,
and the invariantive equation is

0, (x) =2*0,(2)
= (1 + 4a4) 0, (2)
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Now .
Q2 = B¢ (1 — da) = §(n+ 1) 4 P,

and the values of the remaining quantities have already been given ; when they are
substituted in the equation and the factor — e is removed, the equation becomes

0= A {64Py + (n + 5) pPy + %5 (0 4 1) w'} + 3D (n 4 1) p¥P,
) d, . P
+B {3V«“P3 + 8- (WP) +1(n+ 1)#”} +C {5P«“ o T2 P+ 5 (0 + 1) .U«V}’

which is satisfied identically, provided

B=—2A,
C=¢A,
5n -+ 7
— 3
D=—3 n+1 A.
Hence, taking A to be unity, we have
ap d*P, bn 4+ 7
®4=P4— dx+%%:é—_%’mP22, . . . . . (15)

which practically agrees with BrroscuI's function y (I. c., p. 107) for the value n = 4,
the order of the equation in connexion with which the function is obtained.

23, The tnvariant O

The most general form possible is

— AP, + B4 00 +DdP2+EPP3+FP

Proceeding exactly as in the last case, it is easily found that the conditions
necessary for the identical satisfaction of the invariantive relation are

B=— %A,

C = i%A

=—2 A,
Tn + 13

—_ .10

E= T oa+1 A,
Tn -+ 13

— 15 -7 0~

F= T p+1

And, therefore, taking A to be unity as before, we have
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dP d*P, d*P, 7n+13 7n—l~13
O=b =t e T B T P,%2 . (16)

24. The invariant @,
The most general form possible is

D a*P
AP+ B+ OO0 4 DT BED 4 KP4+ LR, T 4 0 ()

+P2{FP4+G-C&—;+ HP22+J~OZ—x—;}.

Proceeding as before, it is found that the necessary conditions are

A___B_.__ZS__(_}_E)]_)____PLE__ n+1TF n+ 1 _(_}___ L—i—l ’Zg
T 3710 =5 5 T 3n+75 Sw+710  1dn+3110°
3K 4-L =0,
Tn + 8
— 10
4M + 3L = 7An+1
. Tn? + 28n + 25
H=32A ot 17

These conditions leave two constants undetermined ; they may be taken to be A and
L. When the values of the others are substituted, it appears that the part of the
function involving L can be expressed in the form

- % L®32>

that is, a composite invariant of index 6. As no new function is thereby determined,
we omit it (§ 18) by making L zero ; and then, taking A to be unity, we have

ar; P, P 371z9+28n+25
0= Ty — 8 G4 0 T = R oY+ A P IS

T + 8 [dP, 3n + 17 o APy o 1dn + 31 d°P,
n + <d'c> 1 Pz{P‘L_Zfl.@+7 3+ 7 olwg} - (17).

-+
fo
1

25. The invariant O
Proceeding as in the last three cases from the most general form, we are led to a

number of relations among the assumed constants which leave two of these constants
undetermined. When all the other constants have their values in terms of these two
substituted, it is found that the aggregate of the terms involving one of the constants
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M can be expressed in the form M®y0,, that is, a composite invariant of index 7. As
this is not a new function, it is omitted, as in the case of ®;; and the quantity which
involves the other constant is then

®, = P — 7 LZ& 105 il,) — 35 d3P4‘ 35 d. 4P__’3 I d_._.spg
7 7 2 dr 22 ard 11 dad 33 dat 4 5
7 Py [ P, ” &P,
— 14 (1 +381) (2 —5~—- + 5(15 +41) — 15 (2n 4 5) =2
3n+4(_ d*P ap, dP, dP, 11550 4 6048n + 6909
I 22 2 o) .
11 n+1{3 da? <P3+ dm) =5 s da }+P 22 (n + 1)? (18)

Invariants such as these which have one part linear in the coefficients of the
differential equation will, for brevity, be called linear invariants.

General Form of Linear Invariants ; Canonical Form of Equation.

26. The last few results suggest a general deduction, which can be derived directly
from the equations (iil.), as to the general form of linear invariants. From those

equations we have

AQy W _
n—-s’ B + A 1

s! - st ! Nemg+19 H—8 +

1 7 gpom. ’ 1_3_ I/
= =" (PA + sPy) + ‘-zs ==l (PN ) e

so that,
AMZ*Q,— P)=sP,_ N + 4s(n — s) Ps_17\ + terms involving P, o, P, s, . .. ;

whence, by (8),

Q= P= Py (b (0 =) 7= =12+
— 1s(s — 1) P,_,; Z + terms involving P, o, P, 5, ...

Il

Thus,
771Q,_; — P,_; = function involving P,_,, Py, .. .,
and, therefore,

apr,_ , e .
”d?l;" —_ 7:—;1 + s¢71Q,_,Z = function involving P,_,, P,_, ..

Combining these two, we have

{Q —1(s—1) dQM} - {P,, —1(s—1) d—g—;—'—l} = function involving P,_,,P,_, ...

MDCCCLXXXVIIL—A, 3 ®
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Proceeding in this way and remembering the analogy of the simpler cases of s, we
should be able to gradually reduce the highest index which occurs on the right-hand
side ; but the terms will become more complicated, owing to the successive differen-
tiations that take place. Now the form of the result to which we are to attain is
known, being an invariantive relation ; the successive operations carried out in the
way indicated always decrease the highest index on the right-hand side and will
never re-introduce a coefficient P already eliminated ; hence, the result attainable from
the foregoing starting point is unique, and we are therefore led to the conclusion :—
There is only a single non-composite linear independent vnvariant for each index from
3 to n, and, therefore, there are in all n — 2 linear invariants.

27. But, again, as the successive steps in the gradual reduction are taken, differential
coeflicients of Z of various orders will enter as factors with P,_,, P, . ... and
differential coefficients of these, the function on the right-hand side being always an
integral function of Z and its derivatives. Now, for the latter, we could substitute
from equations like (6) and (7), and others which have not been given; but every
derivative of Z can be obtained from (6) and from equations deduced from it alone by
differentiation. In that case there would be introduced into the terms containing
P,_,, ...and Z and its derivatives factors of the form P, or powers of P, or deriva-
tives of P,, or combinations of these; with the result that, when all the operations
are completed so as to leave the invariantive equation, the non-linear terms in @ (x)
will each contain at least one factor which is either P, or a power of P, or a differential
coefficient of P,. Hence each of the non-composite linear independent invariants
consists of two parts :

(@) A part which is linear in the coefficients P and differential coefficients of these
quantities P, each term having the proper dimension-number ;

(b) A part which is of the second and higher degrees in these quantities, each term
having the proper dimension-number, and every term having at least one factor which
is either P, or some derivative of P,

These general conclusions are evidently satisfied in the case of the linear invariants
already obtained. '

28. It will be proved immediately that the numerical coefficients in the linear
part are independent of n, the order of the equation ; those of the non-linear part
are not independent of n, as may be seen from the special cases already discussed.
Hence the linear part is the same for equations of all orders not less than the index
of the invariant, but the non-linear part varies from one equation to another; and
therefore BrioscEI's remark made @ propos of @ for the cubic and quartic and of ®,
for the quartic “que ces formes invariantives restent les mémes pour les équations
différentielles d’ordre supérieur” applies only to the linear part.
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Canonical Form of Dyfferential Equation and of the Invariants.

29. The conclusion as to the general form of the invariants ‘suggests that a form of
the differential equation might be adopted which would give to the invariants an
expression considerably simplified. If it were possible to take Q, to be zero (and this
possibility will be proved immediately), then, when the function @, (z) is formed from
the coefficients of the transformed equation (ii.), the non-linear part of the function
will cease to appear because every term in this part contains a vanishing factor ; and
the part that remains constitutes the whole of the invariant. Hence, for the differential
equation, thus transformed, the invariant is a purely linear function of its coefficients,
and, in this linear form, the invariant is determinate when once the numerical coeffi-
cients are obtained.

30. In order to obtain the transformed differential equation, the invariants for
which have this simple form, we return to the original equations of transformation.
By them, considered as applied to equation (i.), there were two quantities at our
disposal, viz.,, A and 2. One relation between them has already been assumed in
deducing the equation (5) or (iv.); and any other may be taken to completely deter-
mine them, provided it does not violate that already adopted. Such a relation which
is permissible is to suppose the quantities A and z, already subject to (iv.), to be quan-
tities which will make the coeflicient of d*~%u/dz*~* in (ii.) zero, that is, make Q, = 0.
Hence, by (6), we must have 9
. ‘ 27 =7* + paER LT
where, by (8),

2’ 2 W
FEAE 0N
If we write
0!

the equation which determines Z is transformed into

20 3
da? 7L+1P20=0 oo (19):
and then we may write : - :
: A= 0}&—-1, d=0"% . . . . . . . . _ (20),

Hence, by the solution of a linear differential equation of the second order, as (19),
the two terms of orders next below the highest can be removed from a linear differen.-
tial equation of any order.* This modified form may be called the canonical form of
the differential equation.

* This result has already been referred 1o, as a general statement (§ 2 ); the exact references are—
CockLE, ¢ Quarterly Journal of Mathematics,” vol. 14, 1876, p. 346, for the cubic;
Lagugees, ¢ Comptes Rendus,” vol. 88, 1879, p. 226, for the general equation.

3F 2
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Since 0 = z'~%, it follows that
6
n 4+ 1

{2, 2} = P . . . . . . . . . (21)

which can immediately be verified, {z, «} being the Schwarzian derivative

(z/u Z/ _ % z//g) Z,—?'.

Determination of the Linear Invariant of Index o in its Canonical Form.

31. The difference between the linear part of @, (z) for a differential equation with
a non-evanescent Q, coefficient and the whole function @, (z) for the equation with an
evanescent (), coeflicient lies, not in any difference between the two sets of numerical
coefficients, for passage from the former @, to the latter is effected merely by making
Qs zero, but in the condition, that for the former ©, the independent variable z was
not determined and so could have an arbitrary value assigned, while for the latter this
independent variable is completely determined. In order, therefore, to obtain the
invariant ®, in its canonical form it will be sufficient to determine the linear part of
®, in its uncanonical form, for which we adopt the same process as in the particular
cases O, ©;, O;, @, ; an arbitrary value is assigned to z, nearly equal to «, and the
coefficients of the linear part are determined, the remainder of the terms not being
necessary for a knowledge of the canonical form. To this we pass by retaining the
linear part alone, and the independent variable must then be considered determinate.

We assume

\ d o — dQ T — —_ d(r—3
0, () =B,Q —B, " 4 BT 4 (—1)pmep, T D

c—2
+(—1)"*B,_, %—z—;%g + a part which vanishes with Q,.
For the determination of the ratios of the constants By, B, ..., it is sufficient to
consider the terms involving ui which occur when the invariantive equation
770, () = 0, (x)

is transformed by means of the equations (10), (12), (13). From the last two these
terms can at once be selected with the following results :—

(i.) In Q, the term involving u' is
—teoc(c—1)p"P,_y;
(ii.) In dQ,_,/dz the terms involving p" are

AP, _
(o= Y P = e(o—1) (o —2)pt T

de °

* See my ¢ Differential Equations,” p. 92.
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(iii.) In d'Q,/dz", where s > 2 <o —1 and 7 +s= g, the terms involving u' are

“ II).§ 7 " 'drPs_;
ser(2s+r—1pt——= —Les(s — 1) p' —-

1P, AP,
_%51'(0--}-3— l)p, dor—1 —%68(8 - 1)}1, Wl;

(iv.) In d"~%Q,/d2"~? the term involving p' is
c—3
Te(c+1)(c—2)ul d——-L

When these quantities are substituted and the coeflicients of corresponding terms
are compared, the satisfaction of the equation requires the following relations :—

$Byo(c—1) = Bi(c—1)

$Bi(c—1)(c—2) =1 B, {2(20 —3)}
$By(0—2) (0 —38) =4 B {3 (20 —4)}
3 Bs(0—3)(c—4) =4 B, {420 —5)}

B, {(o — 3) (¢ + 2)}
B, {(e — 2) (o + 1)}.

1B,_,4.38 =
%Ba'—33'2 =

W= o= .

The last equation determines B,_,, the coefficient of d"~?Q,/dz"~% which is not
required for our present purpose, because this term, though linear, will not occur in
the canonical form. The other equations give

B, = 4o By,
(e —1)(c—2)
B="50,—3 bv

@—n@—ww—aB

2.3 (20 — 3) (20 — 4)

(60 —1) (6 — 20 (6 — 3) (o — 4) B,
2.3.4 (20 — 3) @0 — 4) (20 — b)

B, =

B, =

B (6—1)(c—2P(c—38)?%...5%.42.3
=3= 9.3.4. (0 —3)@2c—3)2c—4)...(c +2)

Hence, taking B, to be unity and passing to the canonical form, we obtain the non-
composite linear invariant of index o in the form '

r=g—-3 dr P
Qtie 3 (—1yeTE L ()
p=1
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where a; = 1 and, for values of » greater than 1,

___(0'—1)(0'—-2)2(0‘—-3)2...(o'—-r—l-])9(0'-—7').
= T3 1 (20 —3)Ro—4)...Ro—7r—1)

By means of this method it would be possible to determine many, if not all, of the
coefficients of the general linear invariant in its uncanonical form ; this investigation,
however, must for the present be deferred. :

22. The general results obtained thus far may be stated as follows :—

When the linear differential equation

d”Z/ r=mn n! dar— ’:l/

0

+

dor 7 Ty rln—rtT T darr T
has its dependent variable y transformed to u by the equation
y == uh

and its independent variable changed from x to z, where z and X (which is a function
of x) are determined by the equations
de
— fr—1 = -2
A=00 —=077
a0 3
ot oy td=0

the transformed equation in u is the canonical form

dry | T=n 7! ar—ry

b3 = 0.
dzn + QT dz""r 0 ‘

]
r=g Pl — 1!

The coefficients P and Q of these equations are so connected that there exist n — 2
algebraically independent functions ®,(x) of the coefficients P and their derivatives
which are such that, when the same function 0,(z) is formed of the coefficients Q and
their derivatives, the equation

0, (x) =20, (2)

is identically satisfied. The possible values of o are 8, 4, 5, ..., n; the function
0,(2) is

=g—-3 dar .
Qo 5 (= 1ya, %
=1 Z

where a; , is unity, and for the remainder of the co-efficients

o =@=D@—=2P@—=387...(6=7+10(—1)
T 2.3, . 120 —3)(20 —4) ... (20 —r—1) ’
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so that @, (z) is independent of n; and therefore any invariant of an equation in its
canonical form is also an invariant of all equations of higher orders when in their
canonical forms.

SECTION IIL
DERIVED INVARIANTS OF A LINEAR DIFFERENTIAL EQUATION.
Quadrinvariants.

33. We are now in a position to construct an infinite number of invariants which
are linearly independent (and also algebraically independent) of one another; they
are, in the first instance, functionally derived from the n — 2 invariants obtained in
the last section, which may, therefore, be called the fundamental invariants or the
priminvariants of the equation. The method of obtaining the first set of # — 2 new
invariants is that adopted by Brroscai for the cubic.

With the notation already adopted, we have for the general priminvariant

70, () = 0, (x),

and thence by (8), after taking logarithmic differentials,

a , d
. oZ = {log®, (2)} —7 {log ®,(2)},
and, therefore, also ' ’
7= (log @ 7z {log ©,(2)} — #* - {log ®,(2)]
o7 =L {log ©,(0)} — 2 . {log 0,(2)} —* 1 (log ©,(2)}.
Substituting in (6) and writing

a? : d 2 19262
@, (7) = 20 = {log ®, (z) } - [dw log @, (w)}] ey

we have
20, (2) = D, (x),

so that @, is a new invariant with index 2 derived from the priminvariant @,; and

from every priminvariant such an invariant can be derived. Now, when the equation

is taken in the canonical form, the value of @, (2) is

®, = 20 Eg; {log ®, (2)} — [{j‘z {log ®, (z)}jr

=gy (O &) _©F
- <’®“: ) e
1

=
)
®°;

{200,0, — (20 + 1)0.};
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and, therefore, we may take a new invariant

®d,1=®(2f(p0'
=200,0,— 20+ 1)02 . . . . . . . (vi)

as the derived invariant in its canonical form. The index of @, ; is evidently 2(o + 1) ;
the number of these derived invariants is » — 2; and it will be convenient to call this
function of ®, sometimes the quadmderwatlve functlon sometimes the quadrinvariant,
associated Wlth Q,.

34. All these quadriderivative functions, derived from non-composite invariants, are
algebraically independent of one another ; but there is no a priors necessity that the
quadriderivative function of a composite invariant should be a composite function.

Let such an one be
P, =06,0,;

then the function obtained from it by the foregoing process is

@, =2\ + p) @, &) — (2\ 4+ 2u+ 1) 2

P, {cp” @, 2} P2
\ 2 (N 4+ p P
g =20 Mg T g o

[ [

so that

=20+ 1) 5 (log (9,01 = oz (@10} |

—aen (S-S g - (S o)

=0+ >{%:a£+§’@;} ot (o + et — (S48

) o, o
e e ) oo 5
(J”L){A@AJ’M TN e, T e,

Hence, ®,, cannot be composed from the invariants already obtained; but, if we

choose to introduce a new invariant
! !
@)\ —_— ®[.L

A6, poO,

the index of which is unity, then ®,, is composite.
35. This new invariant can be otherwise derived. For ©}/@}, is an absolute invariant
(of index zero), and therefore
0r) _ ex
TRONCACH
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whence, after logarithmic differentiation,

06 L O.0] . _ 86 . 6.6,
{@w) "@)“(z)}z""@A(w) Ak

and, therefore, the foregoing quantity is, as stated, an invariant of index unity.
Taking it in an integral form, we have as a new invariant

0,,1=p00,—\0,0, . . . . . . . . (vi)

of index A + p + 1; from the similarit}; of its form with the Jacobian of two binary
quantics, it will be called the Jacobian of ®, and ®, As we have already seen,
quadriderivatives of composite functions are composite functions when Jacobians are
retained.

86. The number of Jacobians which we need to retain as independent of one
another is diminished by the two following results :—

(A) If either of two functions be composite, their Jacobian is composite. For,
taking '
@, = 6,0, A+ p=0)
we have
Dy, 1 = ®M(I):’ - ()‘ + P), ®)\®ﬂ®;'-’
- ®}\®p, 1 + ®p®)\, w1
a composite function. ‘
(B) Of the } (n — 2)(n — 3) Jacobians @, ,, derived from the priminvariants
only » — 3 are algebraically independent ; for between the three which are
derivable from any three priminvariants ©,, ©,, ®, we evidently have a

relation 4
p ®P®’\: 1 + )\' ®)\®l’v Pl + P ®I"®Py Al = O'

Hence the independent Jacobians, as well as the quadriderivative functions @, ,, are
all of the second degree in the coefficients of the differential equation, and may
therefore be called quadrinvariants. And from the foregoing it follows that the
aggregate of “ proper,” 7.e., non-composite, quadrinvariants is composed of two sets,
which are
(i) the n — 2 quadriderivative functions @,,, given by (vi.);
(i) the & (n — 2) (n — 3) Jacobians @, w1 given by (vil), of which only n — 3
are algebraically independent of one another.

37. The simplest example that occurs is in the case of the quartic equation of
which the canonical form is
dta du
'Ozz]:‘l‘ 4Q3ﬁ;+Q4«u—' 0.

MDCOCLXXXVIIT.—A. 8¢
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There are two priminvariants, viz.:—
8; = Qs
dQ,

and there are three proper quadrinvariants, viz. :—

0;,= GQ?,Q”?, - 7Q:“>2;
®4,,1 — 8 (Q4 _ QQ'g) ( //43 _ ‘2Q///3) —9 (er;! _ZQ//g)z,
@3’ 4,1 = 4@4@)’3 - 3@3@)'4

= 4Q4Q/3 — 3Q:Q, + 6Q3Q”3 - SQ,%Z

And if we choose we can replace any one of these by a linear combination which
includes that one ; thus we could replace ®; ,, by 3 ,; — 0 1, the value of which is

d d dQ,\?
‘4Q4%—3Q3% - <%)

Independently of the special application to the deduction of quadrinvariants, the
preceding analysis shows that, when a number of invariants are given, there are two
methods of forming new invariants, viz., the quadrideriwative process and the Jacobian
process.

Cubinvariants.

38. We now proceed to apply these methods to obtain the proper invariants of the
third degree. The quadriderivative process will not produce any invariants of this
degree when applied to any of the invariants already obtained; and, therefore, all
that remains for us to do, remembering proposition (A) of § 86, is to form the
Jacobians of the priminvariants with the proper quadrinvariants.

39. First, the Jacobion of any priminvariont with a proper quadrinvariant which
is itself a Jacobian is a composite function.* For, if J denote the Jacobian of ®, and
0,,,,1, we have

J=p0,8,,1—MN+p+1)6,,.6,

= pO, {10,0, —\0,8, + (» — 1) 8,8,} — \ + p + 1) 6, {46,0, — A8,0,}.
But

%G)A,l = M%@K — ()\ + _22) ey,
%G)m 1= /"'@)M@;’I« - (f"‘ + %) @3

* This is the exact parallel of a well-known proposition in the theory of algebraical forms; see
Cresscr’s ¢ Theorie der bindren algebraischen Formen,” p. 117.
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and therefore

J 0, ()
t o1 oAl 1wl
p@ 2 )\@ ’L®IL + 2 /J‘® 7\@’,\
.- ” )\@
= (=) 0,0 + L2 * (A 5) 0 w6, (1 + 1)

e, . >\® ,
=1(— ){§®M®2_2®®*+#®A®:}
[

' A® 1
()‘+ +1){ x “—@):G): 00, ®Am,}
A u®,, ® , 8 .6
T 2 9,0, T2+ p+1)6,,, {)\@) +;u,®,‘ 2p®}
e A Y 0,,,.1 o

R 1 y “y py 1 .
il e O h o DO e e |

Hence it follows the Jacobian under: consideration can be constructed from prim-
invariants and proper quadrinvariants; it is, therefore, a composite function, and
must be omitted from the aggregate of proper cubinvariants.

40. There thus remain only the Jacobians of the priminvariants with the quadri-
derivative quadrinvariants, and of these the total number is (n — 2)% But, denoting
the Jacobian of ®, , and ®, by ¥, ,, we have S

\Pa,k - )"®)\®:r,1 - 2(0-+ 1)®a,l ®,)\:
v,,=p00,, —2(c+1)0,,0,
so that
: po Y, , — A\, ¥, , = 2(c+1)0,,{\0,0, — 1u0,0,}

- - 2(0‘+ 1) ®¢,1®A,M,1;

and, therefore, when any invariant ¥, , is considered as given, any other of this type,
derived through @, ; and so involving the same o, can be expressed in terms of ¥,
and of invariants of earlier classes; and hence out of the n — 2 functions derived
through ®, , it is necessary to retain only one of them. This being so, it appears
natural to retain that function, which has A = o, and is the Jacobian of @, , and of
the priminvariant ©,, with which 8, , is associated. Denoting it by ©,,,, we have

®o',2 = 0-®o'®:r,1 — (20’ + 2) ®0',1 @;., .. . . . . (Viii.)

with index 8o 4 3; the number of these functions is n — 2, and their aggregate con-
stitutes the aggregate of independent proper cubinvariants. But it should be
remembered that there are (n — 2) (n — 8) other proper cubinvariants, which for their
expression require some one at least of this aggregate.
The proper cubinvariant @ .o Will be said to be assoctated with @,.
3G 2
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Quartinvariants.

41. We now pass to the consideration of the invariants of the fourth degree which
~can be obtained by the methods hitherto adopted.

The most obvious instances of composite quartinvariants are those constituted by
(i) products of priminvariants by cubinvariants proper and composite, and (i) products
and powers of the second degree of proper quadrinvariants; while proper quartin-
variants are to be sought among

(a) Jacobians of priminvariants with proper cubinvariants, the Jacobians of primin-
variants with composite cubinvariants being composite functions, by (A) §36;

(B) Jacobians of proper quadrinvariants with proper quadrinvariants ;

(y) Quadriderivative functions of quadrinvariants, proper and composite.

These must be considered in turn.
42. First, for (a) ; we denote the Jacobian of ©, , and ®, by X, ,, so that

X =10, 6, , — (30 4 3) 9,,, 6,
Xcmh = F’G)p« ®:r,2 - (30- + 3) ®a,2 ®;:. 5

and, therefore,
)\'G))\ Xa’,[.l. - I’"®[L X—d,)\ = (30. + 3) ®0’2 ®/\1!"’1'

Hence it follows that, when one of the functions X, , is known, all the other quartin-
variant Jacobians derived through the same cubinvariant are expressible in terms of
that one function and of invariants of lower degree; and, therefore, as in § 40, the
(n — 2)? invariants of this type can be resolved into n — 2 classes, in each of which
classes only one function need be retained. As before, we choose from the class
derived through @, , that function which is the Jacobian of ®, and ©, ,; and, denoting
it by 0,5, we have

0,;,=00,0,,—(3c+3)0,,8, . . . . .. .. (i)

a proper quartinvariant with index 4o 4 4. The number of these proper quartin-
variants is n — 2 ; and, in particular, the invariant @, ; will be said to be associated
with the priminvariant @,.

When @, , is expressed in terms of @, and its derivatives alone, a simpler invariant
can be obtained by taking a linear combination of ®, 4 and @7 ; there is, however,
no apparent advantage at present in taking such a combination as a canonical form,
and there is the present disadvantage of destroying the law of formation. The modifi-
cations will be indicated later (§134).

43. Second, for (B); there are three cases which oceur, viz. :—

(@) The combination of a Jacobian ®,,,,1 with a Jacobian 0, , , ;
() ’s ’ ’ ®, , 1 with a quadriderivative ©,, ;;
(¢) . ,, quadriderivative @, ; » » 8,
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- Now, in § 39 we have seen that the Jacobian J of ®, and @, , ; is given by

J
70,

€]

0
>

e A —p®? Mtp+l [®
Al —_—1l 1 Al ,\n-1 uvrl
6, 1O~ 2.6, 0T g e, T ore, Ol + 0. }

a result enunciated for the case in which @, (there 8,) is supposed a priminvariant,
though, in the proof, no such limitation was introduced. This may be applied to the
consideration of (@) by writing ®, =, , ;; the functions ©, , , and @, , , are then
cubinvariants (composite, moreover), and therefore J can be expressed in terms of
invariants of the first three classes. Thus from (a) no proper quartinvariants arise.

The same formula may be applied to the consideration of (b) by writing ®, =@, ; ;
the functions @, , ; and @, , ; are again cubinvariants (composite, moreover, if X and p
differ from p) and so J can be expressed in terms of invariants of the first three
classes. Thus from () no proper quartinvariants arise.

These two results can also be deduced as follows. For (a) we take

J= ()\+:u‘+ 1)@/\7!"";1@1”1071— (p+°-+ 1) ®p,¢,1®/’\,m &

and a cubinvariant

= ()\-I- i3 + 1) ®,\,u,1®;z - P®p®:\:m1 5
from which

p®pJ - (P + 0.+ 1) ®p,0,lv = ()\+ ® + 1) ®'\1I~h] {P®PIIJ,0',1 - (P+ O.+ 1) ®p.0,1®;}°

Now the right-hand side is the product of a quadrinvariant and a cubinvariant, and
therefore J is composite. Similarly, for (b) we take

J1 = (}‘+:u‘+ 1) ®«\,M,1®;I),1 - (Zp + 2) ®P,1®;\7Il~:17
and
0,,= p®p®;,l - (2P + 2) 0,,0,
from which

P®pJ1 - ()‘ +p+ 1) 0,410, = (2P + 2)®,1 {(7\ +p+ 1) ev\md@; - P®p®:\,ﬂ-,1}'

The right-hand side, as before, is the product of a quadrinvariant and a cubinvariant ;
and therefore J; is composite.
The last method may be applied to (c) also, and leads to a similar result ; for, taking

= (2P + 2) 0, ®;,1 - (20‘ + 2) 6,1 ®;», 15

®a‘,2 = O-®0'®:7,2 - (20- + 2) ®a', l®::r)
we have

o®,P — (2p+2)6,.0,,= (20 +2)0,,, {(2p + 2)6,,,8, — 00,0, 1}

v.e., the product of a quadrinvariant and a cubinvariant. Hence P is composite, and
therefore from (c) no proper quartinvariants arise.
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Combining these results, we see that the class (8) furnishes no proper quart-
invariants.

44. Before passing on to the class (y), it may be remarked that the results of the
last article are particular examples of a more general proposition, viz. :—

The Jacobian of an invariant of degree m and an invariant of degree n, where m
and 7 are greater than unity, is a composite invariant, that is, it can be
expressed in terms of invariants the degree of each of which is less than
m -+ n.

For, calling the two invariants ®, and ¥, (of indices u and » respectively), their
Jacobian J, and K the Jacobian of ®, and ¥,—an invariant of degree n 4+ 1 and
therefore of degree less than m + n—we have

J == ‘U,q)m\y;b - V\Irn®”’lm
K = 0-@)0'.\1’;& - V\I’ncp:r’

and therefore ‘
00, — p®, K =¥, (ud,0, — 00,9,) ;

that is, equal to the product of an invariant of degree n and an invariant of degree
m -+ 1; and therefore J is expressible in terms of invariants all of degree less than
its own. _

45. Third, for (y); since it follows from § 84 that the quadriderivative function of a
composite function is itself composite, provided the proper Jacobians of composing
functions be considered as a prior class, we see that the quadriderivative of a
composite quadrinvariant is a composite quartinvariant; and, therefore, any proper
quartinvariants that occur in the present class will enter as either

(@) the quadriderivative of a quadrinvariant of the type ®, ,; or

(b) 39 2 2 > ’ ®)\,u, 1

Denoting the function in (a) by P, we have

P= (404 4)0,.0,,— (404 5)07 .,
Also '
®a',2 = 0.@0@;, | (20— + 2) ®a', 1 ®¢lr>

®¢r,3 = °'®a®:r,2 - (30' + 3) @w,2®;§
and it is not difficult to prove that
0P =4(c+1)0,,0,;+4(c+1)°6, — (404 5) 02,

so that P is composite, for it can be algebraically expressed in terms of invariants of
the first three degrees. Thus among the functions (@) there will be no proper
quartinvariant. ‘ '
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For (b), one of the simplest methods is to introduce the function

& _ '®Ay iy 1
= 0,6,

and then, by § 34, it follows that the quadriderivative of @, ,, is composite if that
of ®,, be composite, for the Jacobian of ©,0, and @, , is expressible in terms of
invariants of the first three degrees. Since @, , is of index unity, its quadri-

derivative T is
T = 2‘1),\,#(1) o 3(1)2,\‘#.*

Now (§ 39) the Jacobian of a priminvariant and @, , , can be expressed in terms of
invariants of the first two degrees, and, therefore, the Jacobian P of a priminvariant
and @, ,
sequently, the Jacobian Q of a priminvariant and of P can be expressed in terms of

invariants of the first three degrees at most. But

can be expressed in terms of invariants of the first two degrees; con-

P =o006,9,,— 2, .0,
Q= 00,P — (¢ + 2) PO,
= 0’0 d, , — 300,0,P, , + @, , {66,8, — (¢ + 2) 02},
so that
Q + 42,6, = ’O;P; , — 300,09, , + 30%®, ,.
Hence,

2Q@, + %, 02, — To8?, = 35202, , — 60©,0,d, &, , + 30,20, , = 3P*;

and therefore T is composite. Hence also, the quadriderivative of ®, , ; is composite,
so that there is no proper quartinvariant among the functions (b).

Combining our results, we see that the class (y) furnishes no proper quartinvariants.

46. The general conclusion in regard to proper quartinvariants is therefore the
following :—

There are n — 2 independent and proper quartinvariants, and these are given by
(ix.); oll other quartinvariants derived by these methods are either composed of
wmvariants of the three former classes, or, if proper, can be expressed in terms of in-
variants of the-three former classes and of one or more of the n — 2 independent proper
quartinvariants. |

Invariants of ITigher Degrees.

47. The investigation of the proper quintinvariants proceeds on similar lines to
that for the quartinvariants. It is easy to see that, in forming the Jacobians of @, ,

* Tt may be remarked, as worthy of note, that T =+ 2d% . is the Schwarzian derivative with regard to
z of the absolute invariant log (9,\1/’\6“—1/").
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and @, for all values of o and A, the same limitations on the mutual independence of
the (n — 2)* functions so derived exist as in §§ 40 and 42; and hence of this type
there are n — 2 proper and independent quintinvariants given by

0, :,=00,0,,—(dc+4)0,,0, . . . . . . (x)

the remaining proper quintinvariants being expressible in terms of the functmns 6,4
and of invariants of the first four classes. :

48. By means of some of the results obtained we can show that all the invariants,
obtainable by any of the methods hitherto used or by any combination of them, are
expressible in terms of these different classes in succession of n — 2 proper invariants
associated with the n — 2 priminvariants. For

(i) These proper invariants of any class are obtained by forming the ﬁttmg
Jacobians of the proper invariants of the class next preceding and the priminvariants ;

(i1) By proposition (A) of §36 and the theorem of § 44, it follows that all other
Jacobians are composite ;

(iii) By the analysis of §45 it follows that the quadriderivative of any Jacobian
is composite, if we retain as representative invariants the successive Jacobians of
proper invariants. Now, after ©,,, all the proper invariants ©,,, ©,;,... are
Jacobians, and therefore quadriderivative functions formed from them are composite,
a result already proved in §45 for @, ,; and thus the quadriderivative opera,tlon
applied to any proper invariant will produce only a composite invariant.

(iv) It is easy to see that, if we take any proper invariant ® of a class higher than
the first and from it, considered as a fundamental invariant, construct the same
functions as 0,, 0, ...are of ®, all the resulting invariants will be composite.
For, considering in particular the cubiderivative function of ® corresponding to @,,,, it
will be the Jacobian of the invariant ® and of the quadriderivative of that invariant ;
this quadriderative will in general come under the head of those considered in (iii),
and therefore will be composite ; but in any case the theorem of § 44 shows that the
function will be composite, since @ is of a degree higher than the first. Similarly for
all the other functions. ‘

It therefore follows that the operations, similar to those whereby the invariants
0,,1, 0,5, . . . are constructed from ©,, only lead to composite invariants when
applied to proper invariants of any class beyond the first, and that the only operation
which can lead to proper invariants is the Jacobian, and even that operation only
produces proper invariants of any degree when applied to the » — 2 invariants ®, and
the respective proper invariants of the preceding degree associated with @,

49. The general conclusion as to the derived invariants is as follows :—

It is convenient to range the derived invariants in classes; all the invariants in any
one class are, when the differential equation is taken in its canonical form, homogeneous
in the coefficients Q of the equation and their derivatives; and the degree of any
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class is taken to be the common degree of all the invariants of the clase. In each
class the invariants are of two kinds, viz., composite, these invariants being expressible
in terms of invariants of earlier classes; and proper, these not being expressible in
such terms. The number of proper invariants in any class above the second is (n — 2)?;
but only # — 2 of this number are quite independent of one another, and the remain-
ing (n — 2) (n — 3) proper invariants of the class can be expressed in terms of one
(or more) of the independent proper invariants and of invariants of lower classes.
And the following are the proper invariants of the classes in succession :—

First, the priminvariants @,, ©,,..., @0, ..., 0, each of which is linear in the
coefficients of the differential equation, supposed reduced to its canonical form, and
their derivatives ; the index of each invariant is the same as its subscript number ;

Second, (i) the quadriderivative functions

0, = 200,0", — (20 + 1) O,

which are #n — 2 in number (0 =3, 4, ..., n) and are independent of one another;
the index of @, is 20" 4 2; and (ii) the % (n — 2) (n — 3) Jacobians

O, 41 = p0,08’ — 10,0,

of index A+p+1(\, u=3,4,...,n), but only n — 8 of these are independent,
and the remainder can be expressed in terms of these n — 3, properly chosen, and of

priminvariants. The two kinds of proper invariants in this class are algebraically
independent of one another ;

Third, there are n — 2 independent cubinvariants given by
0,,= 00,0, , — (20 + 2) 0, &,

of index 3o + 3, and there are (n — 2) (n — 3) proper cubinvariants dependent on the
foregoing n — 2;
Fourth, there are n — 2 independent quartinvariants given by

0, ;=000 ,,—(30c+3)06, .0,

of index 4o + 4, and there are (n —2) (n — 3) proper but dependent quartinvariants ;
and, generally, the rth class contains # — 2 independent proper invariants given by

Oy = 00,0y — (r— 1) (o + 1) 0,0, . . . . . (xi)

of index 7 (o 4 1), and also (n — 2) (n — 8) proper but dependent invariants.

And all the invariants of the »th class, for every value of r, are of degree 7 in the
coefficients of the differential equation and their derivatives,

50. In this connexion two points remain to be noticed. It has already (§ 7) been
remarked that M. HALPHEN has, for the quartic, derived a series of invariants from

MDCOCCLXXXVIIL—A. 3 H
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the invariants ®; and ©, by a process which is effectively a continued repetition of
the Jacobian process; and he has* two derived invariants, A, which is practically
Brroscar's quadriderivative of ®,, and ©, practically the same function of ®, He
also {I. ¢c., p. 839) forms Jacobians, which can be expressed in terms of functions
@, (in the notation of the present memoir); and these together constitute his
aggregate of invariants for the quartic.

Lastly, the important simplification of the forms of the invariants due to the
reduction of the equation to its canonical form has been repeatedly remarked in the
preceding paragraphs ; it is, in fact, owing to this that the foregoing classification has
proved practicable. When, however, the differential equation is not assumed to be
thus reduced, a change necessarily takes place in the explicit forms of all the in-
variants ; thus, for instance, in the case of a non-evanescent coefficient Q,, it is not
difficult to verify that

200, (5 2242 — (20 + n{

de,(z)]? 20%
A0, )} — nl—fl Q,0,° (z)]z’2a+2

dz

2 2 2
a0, (z) ao, (oc)} _ 126 P2®a'2 (m) ’

=208, ()5 = (2o + 1 {77

from which a non-canonical form of ®, ,—the value of ®, being supposed known-—is
at once apparent. But into the expressions of those proper invariants which are
Jacobians the coefficient Q, does not explicitly enter until substitution begins to be
made for the invariants in this Jacobian form.

Finality of the Results.

51, The results so far obtained, though very general, have not been shown to be
exclusively so. It has been proved that all the linear invariants which exist are
included in the set of priminvariants; and that all the invariants derived from them
by the given methods can be expressed in terms of the proper invariants of the classes
as arranged. But no proof has been given that, for degrees higher than the first, any
invariant possible can be deduced by the methods used, or that any invariant can be
expressed in terms of the assigned invariants. Until one of these two propositions
(or some equivalent proposition) is established, we are not in a position to declare that
all possible invariants of the differential equation can be expressed in terms of the
given invariants.

The consideration of this question will be deferred until Section VIIL, where the
investigation will include not merely the invariants, but other invariantive functions
yet to be obtained.

* ¢ Acta Math.,” vol. 3, pp. 835 and 341 respectively.
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SECTION 1IV.
AssociATE EQUATIONS AND DEPENDENT V ARIABLES.
LAGRANGE'S ¢ Equation adjointe.”
52. It was proved by LAGRANGE,* that in connexion with every linear differential

equation there exists another linear equation of the same order, and that a know-
ledge of the primitive of either is sufficient to lead to the primitive of the other. Let

Yi,Ys, - - - » Yu be n special and linearly independent solutions of the equation
(Z”fl/ ar— 2?/ ‘ dar— 3?/
tél/; + R2 dar—2 + R3 dan—3 + e + Rlly = 0 H
then
-2 (-2 (-2
V="0,= | Ypn—1s Yn—g s+ Y1
m=3 (-3 (-3
yﬂ—-l ’ ?/1‘——2 LR .7/1
yn;l s 3/71—2 LR ?/1

is an integrating factor. For, since ¥y, ¥y, - - - , Y., satisfy the equation separately,
the n — 1 quantities R can be found in terms of them ; and, when these values of R
are substituted and the equation is then multiplied by v, it takes the form

d -1 @-2 , = 0.

de 'Y Y - Y Y
-1 (n-2) ,

yﬂ—-l ) yn—l LI ?/11—'1; yn_l
n—=1) (-2

yn-—2’ :l,/n—,‘z, > s y'n—ga yn—z
(n—1) (n—2)

i > s Y1 5

But an integrating factor of the equation satisfies the relation

dr dn-—2 dn—?’ _
ot s (ORe) = T (0Ry) 4 A (= 1) eR, =0,

,

* ¢ Miscellanea Taurinensia,” vol. 8, 1762 ; ¢ (Buvres,” vol. 1,p. 471.—* Solution de différents problémes
de calcul intégral.”

3 H 2
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as can be seen at once by multiplying the foregoing equation by v and integrating by
parts. This is LAGRANGE'S associate equation (“équation adjointe”); it is of the
same order as the original equation ; and its special and independent integrals may be
taken to be the n determinants cach of (n — 1)? constituents given by

-2 (-2 (-2 (n—2)
yn ] yn—lz yzz—za A ,7/1
(n—3) (n —3) (n—38) . (n - 3)
?/;:. s y//-l 3 ?/n—g 5t v 91
yn 3 ?/n-—l 3 2/11—2 y v ?/1

Tt is well-known that the Lagrangian associate of the Lagrangian associate is the
original equation ; it is evident that, if either be in its canonical form, the other is so
also. It will now appear that the equation is only one of a set of equations, and its
variable only one of a set of dependent variables, associated with the original equation.

Sets of Variables subject to the same Linear Transformation ; Algebraical Combination.

53. The n special integrals v constitute a fundamental system of integrals, and
each of the members Y, Yy, ..., Y, of any other fundamental system is a linear
function of the former set, so that in effect a change from one fundamental system
to another is only a linear transformation of the dependent variables concerned.
(There is here no question of the necessary modifications of fundamental systems
owing to the presence of ‘“singular” values of the independent variable). This
transformation may be represented by

(Y, Yy oo s YD) =(MX Y, %y oo s %)

where M is a constant matrix with a non-vanishing determinant. But this applies
not only to the dependent variables, but also to their derivatives of all orders, so that
we have

dar  dar dar dar ™ dar da”

for any value of 7. And, if we retain this equation for values 0, 1, 2,...,n —1 of
the index 7, we shall have in all n sets of variables subject to the same linear trans-
formation ; and these variables are linearly independent of one another, since for the
satisfaction of the differential equation we need the nth differential coefficients of the
quantities ¥, which have been specially excluded.



DERIVATIVES ASSOCIATED WITH LINEAR DIFFERENTIAL EQUATIONS. 421

54. Since the n quantities y are linearly independent of one another, they may
be looked upon as the coordinates of a point in a manifoldness of #n — 1 dimensions ;
and, if we assume the same linear independence of the derivatives of all the orders
up to the (n — 1)th inclusive (which is equivalent to an assumption that no linear
function of the quantities ¥ with constant coefficients is equal to a rational integral
algebraical function of order less than n — 1—an assumption justifiable with general
coefficients, though not necessarily so in any particular case), then each of the n — 1
sets of derivatives, each set being constituted by those of the same order, may be
looked upon as the coordinates of a point in a manifoldness of n — 1 dimensions.
And, since the law of linear transformation is the same for all the sets, all these
points may be taken as belonging to the same manifoldness. There are thus n different
and independent sets of cogredient variables connected with the single manifoldness
of n — 1 dimensions.

55. In the theory of the concomitants of algebraical quantics of any order in the
variables of a manifoldness of #n — 1 dimensions, it is necessary to consider all the
possible classes of variables which can enter into the expressions of these con-
comitants. CrLEBscH* has proved that there are in all n — 1 different classes of
variables which thus need to be considered, and that, if @y, @y, ..., 43 Y1, Yoy -+« 5 Y}
21y %gy -« » %3 - .. bE m sets of cogredient variables, the several classes are constituted
by minors of varying orders of the determinant (itself an identical covariant)

Ly gy o v oy Ly |,
Yo .1/27 e e Y
21y Zgy o0 vy 2y

those of one class being minors of one and the same order. The variables of any class
are linearly, but not algebraically, independent of one another, except in the case of
the first class, constituted by minors of order unity, and the last class, constituted by
minors of order n — 1 (the complementaries of those of the first class), in each of which
classes the 7 variables are quite independent of one another. And all similar combina-
tions of variables are expressible in terms of variables actually included in the classes.

56. In connexion with our differential equation we have obtained n different and
algebraically independent sets of cogredient variables; the functional derivation of
‘the sets, one from another in succession, by the process of differentiation has been
excluded from any interference with their algebraical independence. We already
have one class of variables, viz., ¥, ¥, . . ., ¥, analogous to the first class of algebraical
variables, and another class of variables, viz., v, v,,. . . , v, analogous to the (n — 1)th
class of algebraical variables ; and the relation

* ¢« Ueber eine Fundamentalaufgabe der Invariantentheorie,” ¢ (t6ttingen, Abhandlungen,’ vol. 17, 1872.
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which is satisfied, is precisely the same as the corresponding relation between the
similar variables helping to define the higher class (CrEBsch, [. c., p. 4). Hence,
from the point of view of purely algebraical forms, we infer that the suitable
algebraical combinations of the sets of variables, which have arisen in connexion with
the differential equation, are the minors of varying orders of the determinant

A = yl 3 y2 5 e v s yu v 5
’ ’ 4
y 1 5 3/ 2 5 et ey 3/ n
(n—1) (n—1) (n~1)
?/1 > fljg > ottt yn

which determinant, as we know, is a non-evanescent constant; and these variables
may be ranged in classes, which for the present may be called linear, bilinear, tri-
linear, . . ..

Algebraical Combinations functionally Invariantive.

57. Now, after having obtained the merely algebraical result, it is necessary to take
account of functional dependence of the sets due to differential derivation. In the
case of the algebraical quantics, it is a matter of indifference which set of minors of
the first order be taken to constitute the first class of variables, which set of minors of
the second order be taken to constitute the second class, and so on; thus for the
second class the same kind of variable is obtained by taking the (xy) minors, as by
taking the (yz) minors, or the (x2) minors. But a difference arises in the case of the
variables occurring in connexion with the differential equation. There are n sets of

linear variables distinct in character from one another; for 4/, ¥/,, . . . , 9/, are special
integrals of an equation quite different from the original equation, though they are
subject to the same law of linear transformation as ¥, ¥y ..., ¥, There are

in(n — 1) sets of bilinear variables distinct in character ; thus

‘ Y'n 0

> ( ¥ Y
Yo Yo

17 /
Yo Yo

’ ‘ y”b yl ‘
?/”2’ ?/2

are three distinct variables of this class, subject to the same law of linear transforma-
tion ; and so on for the higher classes.

58. Most of these, however, will be excluded. These forms of variables have been
suggested in connexion with the theory of linear transformations, for which trans-
formations algebraical concomitants involving them are covariantive. The invariants
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considered in the earlier part of this memoir have possessed their invariantive pro-
perty for functional transformation ; and, therefore, if forms involving the dependent
variables are to be included in an aggregate of concomitants together with the
invariants, these forms must have the same invariantive property for such functional
transformation. In this aggregate of concomitants the variables themselves will be
included ; and, therefore, we must select from the foregoing algebraical combinations
those which have the invariantive property of reproducing themselves, save as to a
power of 2/, after transformation.

Of the 7 sets of linear variables constituted by the several sets of n quantities ¥,
n quantities %/, and so on, only the first set has the property of being reproduced by
the new variable, save as to a power of 2’ ; and we already know that, if % be the new
dependent variable, then the relation is, by (iv.),

y=w/7H0o oo (xibg

Of the 4n (n — 1) sets of bilinear variables, each set containing 4n (n — 1) variables,
only a single one has the invariantive property of self-reproduction, save as to a
power of 2'; and this single one is the set constituted by the 4n (n — 1) variables of
the type )

' Yo U

This statement, which leads to the retention of the single set and the exclusion of
all the remainder, can be at once verified by making substitutions of the type (xil.);
and the result of the substitution on the typical variable of the present class is that,
if ¢, denote the original bilinear variable and v, the transformed bilinear variable

du,
e U
A,
PR
then we have
ty= N2 vy = 0,2/ """ D=y 730D 0 (xiil).

Similarly of the §n (n — 1) (n — 2) sets of trilinear variables, each set being consti-
tuted by corresponding minors of the third order, there is only one set of which each
variable has the functional invariantive property ; and a typical variable of the set to
be retained is

ta=1 v~ yr’, Yr

’ ’ ”
Ys Ys: ¥s
by ’

Yo Yps Yp
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The relation of transformation is

ty= N2 PPy =g/ O L (xiv),

where v is the corresponding transformed trilinear variable.

And in general of the n!/p!n —p! sets of p-linear variables, each set being
constituted by corresponding minors of the pth order, there is only one which has
variables possessed of the functional invariantive property, and of this set a typical
variable is

_— ’ 1 ) -1
tp'— Y Y1 ?/17"'».1/1(1) )!,

’ 7 (-1)’
Yoo Yo Yo s e oo s Yg'”

’ 1’ (p—1)
Yoo Yps Yp s oo o5 Yp®

where as before y' denotes dy/dx. If v, denote the same p-linear variable associated
with the transformed equation, the law of transformation is
—_— /1424...4+p—1
by =1, N2 ?
=, o —tp(—1)+ip(p—1)

=, /70D L (xv)

The last set of variables is that for which p =% — 1; and the typical variable of
the set is the variable of LAGRANGE’S ““ équation adjointe.”

- Associate Dependent Variables.

59. Hence there are, in all, n — 1 sets of variables; all the variables in any one
set are particular and linearly independent solutions of a differential equation the
dependent variable of which is a typical variable of the set. Hence, connected with
the given differential equation, there are n — 2 other differential equations; these
may be called the associate equations. The n — 2 new dependent variables, derived
by definite laws of formation, may be called the associate dependent variables; and,
calling them in turns the associate variables of the first, second, . . ., (n — 2)th rank,
the differential equation of which the dependent variable is the associate of the
(p — 1)th rank is linear and of order n!/p!n — p!. For the functional transfor-
mation of the original dependent variable given by (xii.) the law of transformation of
the associate variable of the (p — 1)th rank is given by (xv.); and, if we call two
ranks complementary when the sum of their orders is n — 2, then associate variables
of complementary rank are transformed by the same relation, since for such variables
the index of the factor power of 2’ has the same value.

The associate dependent variables may therefore be ranged in pairs of complementary
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rank ; in the case when 7 is even there is one dépendent variable of self-complementary
rank. FEach pair has the index of the factor power of 2" different from that for any
other pair. The simplest case of this arrangement is that which combines in a pair
the original variable ¥ and the variable ¢,_; of the “adjoint” equation of LAGRANGE;
and the two dependent variables have the same functional transformation. Since #,_,
is thus a covariant for the transformation, HALPHEN infers that the invariants of the
equation satisfied by ¢,_; are invariants of the original equation, and he has used this
proposition to construct @, (see § 6).

Reference to Invariants.

60. Before proceeding further with the associate variables, there is one point which
may be considered conveniently here. The quantities ¥y, ¥,, . . ., ¥4, from which the
associate variables are constructed, are, all of them, covariants with the same index ;
and, in particular, the associate of the first rank is in each case the Jacobian of two
of these covariants. Now, when we were considering invariants we were led to new
invariants by forming the Jacobian of any two ; and thus there is suggested a new
means of forming invariants, if, e.g., for three, which by involution to suitable powers
can be made to have the same index, we form the same function as the associates of
the second rank are for the special values of the original variable. It may, however,
be easily proved that such invariants are composite. Forlet @, ¥, X be three such
invariants with the same index 6 (e g-, they might be @, @, @, and 0= Aup) ;
then the new function

N=| &, v, X
@, v, X
(I’/’, ,\I,//’ X//

Let [®] denote the quadriderivative of @ ; then
200%” = [@] + (20 + 1) ",
and similarly for the others, so.that after substitution for ®”, ¥, X" we have

20 + 1

[® N4
H‘ze%{ ]J‘w(\p X)+[ ]Jac(X cI))+ Jac(cp w)}+ 50 ® v, X
&, v, X
P P?r X
@ v’ X
But the determinant on the right-hand side is -
I X\/X @ -
cwx<q) W><§_f) (i-(;)— s (VUX) ™10, (@, V) T,y (¥, X) T (X, 9) ;

MDCCCLXXXVIIL—A. 31
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and hence II can be expressed in terms of the invariants which have been retained as
fundamental and of proper derived invariants. Thus, in the case of the invariantive
combination suggested by the associate variable of the second rank, only composite
invariants are obtained ; the result is general for all the invariantive combinations
thus suggested.

Combinations of the Associate Variables.

61. Consider now the complete set of dependent variables, viz., the original
variablg y and the n — 2 associate variables, as a fundamental set. Any one of them
satisfies a linear differential equation of determinate order ; and with it, as an original
dependent variable, there will be associated a number of new dependent variables, in
number 2 less than the order of the equation, and functionally derived from it in the
same manner as the preceding have been derived from .

- Taking a few simple cases, consider first that of the associate of the first rank
and let

Vg = ?/1?/i2 - .%yi1 5 Vg = YslY'y — Yalf'ss Vsp = Ys¥'s — Ye'ss

80 that vy, V44, V5, are particular solutions of the equation whose dependent variable
t, is the associate of the first rank. One of the set of variables, associate of the first
rank with ¢,, is

YY'e — Yo' ylyﬁz - yzyﬁl
Ys¥'s — Yal'sr Ys¥'s — YuY's

i
V19, V1o

i
Vsgo Vs

H
= Yol Y1s Yss Yo | — Y11 Y25 Yss Yu |>
i i i i i i
Y15 Ysr Ya Yo, Ysr Yu
ii ii ii ii ii ii
Yv Ys Yy Yo Y Y

and is, therefore, expressible in terms of associates of the original variable ¥. Again,
one of the set of variables, associate of the second rank with ¢,, is

_ | i ol L o

Vigy Vags Vg | = | Y1¥Yo—YYr YsWsa—YYs Ys¥e— Ys¥s
) ) , N i . N B N

Vg Vs Ve YW= YY1 YsYa—YY s Yshe— Y5

il

it ii ii iii iii il tii 1ii )
Vg U'sp U'se NY oYY v YsY a— Y 3 Ys¥ 6 =YY 5

+ | vl — o Y — Yl's  Ys¥s — Y's
s — Yy, Uy — Y YsY's — Ye's
Yy — Yoyt Y'Yy — Y'Y's yiayﬁﬁ - 9163/ﬁ5

= Y1Ys Vaass — Yol V1ass — Y1Ys Vesss + Ya¥s V1356 — V123 Vase T Vioa Vsse»
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where

Vpgrs = | Yp» Yoo Yrs Ys |»

i

i i 1
Yp Yo Yr Ys
s N . .
y I)’ yllq’ yllr’ ylls
ii
ylﬂl s ?/ul q’ Jllllr, yllus

and similarly for v,,; hence it is expressible in terms of associates of the original
variable .
As a last example, consider the set of variables associate of the first rank with ¢, ;
one of these variables may with the foregoing notation be written—
) V193 Vgss — V108 Vises
and this easily proved to be
= V1g Vaass Tt Va3 Viass T+ Us1 Vouses

again expressible in terms of associates of the variable v.

62. From these particular results and the preceding investigations the following
inferences may be drawn :— ' _

(1.) The system of associate variables, constituted by w, ty, &, ..., t,_y, is
functionally complete; that is to say, the variables in the systems associate with
any one of them (derived from that one by the functional operations of the type
which led to 4, &, t;, . . . ) are, qua variables, expressible in terms of combinations of
particular associates of the original variable y; in the formation of these combinations
it may be necessary to introduce functions of the coefficients of the original equation.
Hence, as typical dependent variables, the associates of the variables associate with y
may be looked upon as expressible in terms of the variables associate with ¥, the
necessary combinations of which are only multiplicative and additive; and they
therefore introduce no new associate variables.

(2.) Invariants of associate equations are all of them invariants of the original
equation ; the complete converse of this may not be affirmed.

(3.) Differential equations in associate variables of complementary rank are
mutually “adjoint.”

The last inference is suggested by the following considerations :—When we
construct the equation adjoint to the differential equation, of which the dependent
variable is ¢, and order m !/p! n — p!, the process can be performed in a manner
similar to LAGraNeE’s adopted in § 52. The integrating factor, which is the
dependent variable of the adjoint equation required, can be constructed as a
functional determinant of special solutions ¢ of the equation, in number one less than
the order of the equation. For the special integrating factor, corresponding to that
of § 52, let the particular ¢ solution omitted from the determinantal expression be the
functional detérminant of Y1, Yo - - . » Yp. When, in the integrating factor, determinant
substitution takes place for the particular solutions in terms of the quantities y, it
appears that the determinant is of dimensions '

312
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n — 1!
p—1ln—p! !
in each of the quantities y,, v, . . . , ¥, and of an additional unit dimension in each of
the quantities 4,1, ¥p10 « - - » ¥ Since the functional determinant of 4, v,, . . ., ¥,
is a constant, the part of the factor dependent on the {n — 1! +p — 1! n—pl} —1
dimensions in the quantities ¥, ¥,, . . . , ¥, may be expected to be a constant ; the
later part may be expected to be a functional determinant of ¥, 1, ¥pig -« -5 Yo

This last is a special value of the dependent variable of complementary rank, and
is the conjugate of the dependent variable ¢,_, omitted in the construction of the
integrating factor. IHence it may be expected that the variable of the differential
equation, adjoint to that in #,, shall have as its variable 7,_,.

I do not propose to attempt to give here, however, a rigid investigation of the
inferénces just suggested. ‘

The equation of lowest order for which an adjoint exists is the cubic; after the
formation of this adjoint equation, which will be effected later (§82) in connexion
with the investigation of some questions about the cubic, the identity of the

covariants of the two equations will be evident. Similarly for the case of the quartic
(§§ 102-107).

SECTION V.
IpENTICAL AND MixED COVARIANTS.

63. In the last section a set of n — 1 dependent variables v, t,, ¢, . .., ¢,_, has
been obtained which are algebraically independent of one another, and each of which
possesses the same invariantive property as the fundamental invariants ; and, just as
was the case with the invariants, we can, by using the methods employed in
Section III., deduce other covariants from each of these dependent variables alone,
from combinations of them with one another, and from combinations of them with the
invariants. As it is desired to retain only those functions which are not composite, a
selection must be made as before. The forms of the functions will be destitute of one
of the characteristics of the invariants ; their indices depend on the order of the diffe-
rential equation, and the number expressing this order enters into the numerical
coefficients, so that these new covariantive functions vary from one equation to
another.

Identical Covariants in the Original Variable.

64. In this class are included all those functions possessing the invariantive
property, and involving the dependent variables alone or their derivatives, but not
the coefficients of the differential equation, when taken in its canonical form; on
which account they may be called identical, or absolute. Beginning with the original
dependent variable, we have
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/I/ —_— uz/"'%("’"‘l)’

so that we may consider  as a covariant of index -~ 4 (n — 1). Proceeding in the
same manner as in §33, it is easily found that

[(n — Y { <u>2} + (%)2 +3 (%i—li)_ Qz] 2
- ] o

which at once gives a new invariantive form. When the transformed equation is in
its canonical form, so that Q, vanishes, the new covariant is

w w'\*? w'\?
= {L -G+ ()
with index 2; or we may write
Uy=n—-1)w' —n—2)u? . . . . . . . . (xvi)

of index 3 —n. This is the quadriderivative of .

65. There are thus two covariants  and U, ; from them as fundamental covariants
we can deduce the series of successive Jacobians. Thus the covariant next in degree
is (§40)

—3+(n—1)uU — (3 —n) Uy,

or say it is
Ug=mn—1)uU%—2(n—3)Un . . . . . . . . (xvii)
with index 3 —n — 1 (n — 1)+ 1 = — 3 (n — 3). The next is
U,=@®m—1)uU3—3 (n —3) U/ . . . . . . . (xvii)
with index —§(n —38) —§ (n — 1) + 1= —2(n — 3); and so on. And the rth

covariant in the complete succession is
Ur = (n - ]) u Ur’-—l — (7” —_ 1) (71, —_ 3) Ur—l W . e (XIX)

with index — 1 7(n — 1). By means of the propositions used for the invariants it is
easy to see that this series constitutes the aggregate of proper covariants involving u
alone ; for all others, obtained by combinations and by the application of the functional
operations to combinations other than those which glve results (xvi.)-(xix.), are, by
those propositions, proved to be composite.
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66. The number of terms in this succession of identical covariants is given by values
of » from 2 to n — 1, so that the succession includes, besides u, the n — 2 terms U,
U?;, e U,_;. When the value n is assigned to 7, the resulting covariant is one
which involves d"u/dz", and which can, therefore, by means of the differential equation
satisfied by u, be transformed so as no longer to involve this differential coefficient.
It will then involve derivatives of u of order less than 2, and also the seminvariant
coefficients Q ; such a covariant will be called a mixed covariant, because its expression
depends partly on the variable and partly on the coeflicients, Further, every succes-
sive covariant derived by the Jacobian process can be similarly transformed, and will
then become a mixed covariant., There will be some limitation on the number of
ndependent covariants of the mixed type thus obtained ; for the elements, so far as
concerns the dependent variable, are only # in number, being u, «/, ..., «*~V, and
elimination of these quantities among more than n mixed covariants will lead to
relations involving covariants and functions of the coefficients of the differential
equation only. TFrom the fact that the quantities, which occur in the result of the
elimination, and are not functions of the coefficients, are covariantive, it is o priors
probable that such functions of the coefficients as enter are invariants of the differen-
tial equation, or combine with the variables to constitute mixed covariants.

For example, in the case of the cubic equation, which is

AP

1 its canonical form, and has @; for its priminvariant, it is easy to show in general

Ug=(n—1v*u" —38(n—1) (n—3)uv'v” + 2 (n — 2) (n — 3)u?,
50 that, when n = 38,
U;= (8 —1)°vwu"” = — 443@,;

and there are, therefore, no proper identical covariants involving u alone, except v and
U, for the cubic. The corresponding investigations, which must be deferred until the
mixed covariants are obtained, are given in § 76 for the quartic, in §77 for the quintic;
and the general investigation for an equation of any order is indicated in § 138.

67. In the case when there is given, not a differential equation, but a differential

quantic of the form
k n! dar—ry
peo Pl —l T dgrr?

<
M
S

and we are seeking the identical covariants for the transformation which changes this

quantic to
: 3 nl dar—ry
Q dzr=r "’

1M

» rin —7!
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save as to a power of 2’, the number of the covariants of this type is (with the
reservation of §77) unlimited ; and in the case when the second form is the canonical
form, so that Q; and Q, vanish, all the covariants thus obtained for this form of
quantic are purely identical, that is, they do not involve the coeflicients Q.

Identical Covariants in the Associate Variables.

68. Two kinds of identical covariants are possible. First, there are those which
involve only a single one of the set of dependent variables; and the aggregate of
these, for each of the associate variables, is similar to that just given for the original
dependent variable. Second, there are those which involve more than a single one of
the set of dependent variables, and which, therefore, may be called simultaneous; but
it will appear (see §72) that this class need not be retained, for they can all be
derived from proper invariants and covariants by purely algebraical processes of
multiplication and the like. Hence the former class alone requires to be retained.

To find all the covariants depending on the associate variable of general rank p — 1,
the process is the same as before ; we take the variable in connexion with the normal
form of the fundamental differential equation and, denoting it as in (xv.) by v, with
index — 4p (n — p), we find a quadriderivative function

/2

1 )
p—p)(5 =)+

2 2
U Uy

which is covariantive, or say

Vp,zzp(n—p)vpv"p-(np—pzv— 2, . . . . . (zx)

with index — (np — p* —2). When the series of Jacobians of v, and the functions
V are formed in succession, they are found to be

Vs=pn—p)o,Vye—2(mp—p*—2)V, v, . . . . (xxi)
Voa=pn—p)v,Vy3—8(mp —p*—2)V, 0, . . . . (xxid)

and the general term in the succession is
Vo=@ —p) Vi —o(ap— g — ) Vs, . (xxiii)
The index of the covariant V,,, is — 4s(np — p* — 2). The number of covariants in

the succession is (with a reservation similar to that in §77, post) infinite when the
assoclate v, is regarded as the variable of an unretained associated differential quantic ;
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!
1 " _ 1, when the associate v, is regarded as the variable
pin—p!

it 1s finite, with value
of the associate differential equation.

The foregoing aggregate includes all proper covariants which involve v, alone in
their expression ; this result is derivable from the propositions which were proved
in Section IIL., and may be verified separately for the covariants. Thus, for instance,

if 1T denote the Jacobian of V,, and 'V, , it is easy to show that

pn—p)o,T=r(mp—p*—2)V,,V, ., — s (np — p* — 2)Vﬁ,svp,r+1a

whence it follows that T is composite.

Mixed Covariants in the Original Dependent Variable.

69. By this title invariantive functions are indicated into whose expression there
enter the dependent variable or variables and the coefficients of the original differential
equation. One method of obtaining them is that adopted in § 85, viz., to combine
the variables and the invariants in such a form as to be absolutely invariantive, and
from this form derive a relative invariant which is practically a Jacobian,

Beginning with those which involve only a single dependent variable and taking w
first, we have ®"~ 4% an absolute covariant, so that

@Z—-l(z) u2cr — @Z—l (x)yZo-’

from which it follows, by taking logarithmic differentials, that

’

e, w
(n —_— 1)®'—‘7 -} 20‘;
is a covariant of index unity, or say
0,(u); =200 +(n—1ud’,, . . . . . . (xxiv.)

with index o + 1 — 4 (n — 1).

70. The following propositions enable us to select the non-composite mixed
covariants :— 7

(i.) It is evident that, if ®, be a composite invariant, then 8, (u), will be a composite
covariant ; hence we need only consider such functions as are derived from proper
invariants. _

With every proper invariant there is associated a proper mixed covariant of the first
order in u ; but, when one of these proper mixed covariants is considered as given, all
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the others can be expressed in terms of that one and of invariants. For from the
proper invariant ®, there is derived the proper mixed covariant

b, (u); = 2p0,0" 4 (n — 1) u@’,
so that

' C‘@,Hp (u’)l - p®p9«r (u)l = (n - '1) u (O—@)v@,pl - p®P®"T)

=(n—1u8,,,,
which verifies the statement.

(ii)) When the successive identical covariants Uy, Us, U, . .. are taken instead of
u, new covariants are obtained by forming the Jacobians of these covariants U and
the invariants ®. All such covariants are composite. For, taking U, with index p,
equal to — 3\ (n — 1), and denoting the Jacobian of U, and ®, by J, we have

J=upU0, —00,U,;
and we have
U= pU0 + 4 (0 — 1)U,
so that :
(n—1)uJ + 00,U,,, = puU,{(n — 1) u®’, + 200,u'}

= #UA O«r (u’)l’

whence J is a composite covariant. Hence this class of covariants must not be
included in the aggregate of proper covariants. (See also §39.) '

(iii) Tt is unnecessary to form the series of successive.Jacobians from u and 6, (u)1
as fundamental covariants; for the Jacobian of u and 6, (u), is composite, and, there-

fore, all subsequent J acoblans are composite. To prove the statement, denoting this
Jacobian by 8, (u),, we have -

0, (1), = {20 + 2 — (n — 1)} 0, () o/ + (0 — 1) ufl, (u),
= 20 (20— n+3)u?0,+ (n — 1) (40 + 2) uu'®’, + (n — 1)2u0”,

+ 20 (n — 1) uu"®,,
after substitution. But

o 0,,= 200,0", — (20 + 1) 072,
so that
2000, (u)y — (n — 1) u%0,, : ,. .
= (n — 1) (20 + 1) 4?0, + 406° (20 — n + 3) v 6}
4+ (r—1)40(20 + 1) 0,0, + L0? (n — 1) u"©?
= 40%02 {(n — 1) uu” — (n — 2) w'?} |
+ (20 + 1) {(n — 1)°w*07, 4+ 4o (n — 1) u®' W0, + 40702}
= 40’0 U, + (20 4 1) 6; (u),,

and, therefore, 8, (u), is composite. (See also §39.)
MDCCCLXXXVIIT.—A, B 3K
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(iv) Similarly the Jacobian of 8, (), and any invariant ®, of index p is composite ;
for, denoting it by V, it is easy to show that

p-p e

whence it, follows that V is composite.

In the same way it may be proved that the Jacobian of 8, (), and 0, (u), is com-
posite. (See also §43.)

71. The general result, therefore, is that all the covariants; which can be obtained
by the methods used, are expressible in terms of the identical covariants v, U,, Us, . . .
and of the mixed covariants of the first order 6, (1), ; all of these are proper, v.e., they
cannot be expressed in terms of invariants and covariants of earlier rank, but all the
mixed covariants can be expressed in terms of any one of them and of invariants.

-

Mixed Covariomts in the Assoctate Variables.

72. The aggregate of mixed covariants, which involve in their expressions only a
single associate variable, is for each associate composed similarly to the corresponding
aggregate in the original variable; and all the covariants, which can be obtained by
the methods employed, can be expressed in terms of the identical covariants
Vps Vpor Vpss - - -, and of mixed covariants

0, (v,); = 2000, + p (n — P9,

of the first order. These mixed covariants are proper, but they can all be expressed
1 terms of any one of them, and of invariants.

By retaining as proper covariants one at least of these mixed covariants of the first
order in each of the associate dependent variables, we are enabled to dispense with
the simultaneous identical covariants (§ 68) as being composite. For the simplest
simultaneous identical covariant is the Jacobian of two of the dependent variables,
suy w and v, ; and it is easily proved that

(n — 1) ub, (), — p (n — p) 9,6, () = 200,{(n — 1) w, — p (n — p) v},

so that this Jacobian is composite.

The application of the analysis of § 60 (which shows that the invariant function
obtained by constructing a function for invariants, similar to them in the same way as
v, is to %) to covariantive combinations of more than two of the associate variables
taken simultaneously shows that such combinations can be expressed in terms of the
covariunts already obtained, and are therefore compomte

73. Tt has been shown, in (iii) of § 70, that successive Jacobians of 6, (), and u are
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composite ; the same holds of those formed with 0, (u), and v, For, denoting the
first of such Jacobians by T, we have

T={o+1—4(n—1)30,()hv,+4p(n—p) ot (u),

whence by means of the expression for 6, (u),, in (iii) of § 70, which is a composite
covariant, it follows that

(n—1)uT — 3 p(n—p)vl,(u),
={o+1—=%(n—1)}0,(u)h[(n— v, —p@n—p)ow]

But the simultaneous identical covariant on the right hand side is composite ; hence
T is composite. So for the others in succession.

Lastly, as in (iv.), the Jacobian of any two mixed covariants of the first order in
any variables is composite. For taking

W=f{o+1—50—130, )0, @01 —{p+1—1p(r—p)}6, ()0, (),

it is easy to show that

(n = DuW+ {p+ 1 —p (0 — )}, (5,), 0, (u)
= (20 —n+8)0, (), [ (0 — ) w8, (5,), + {p + 1 — 3p (n — p)} 6, (v}

It has just been proved that the second factor on the right hand side is composite ;
and therefore W is composite.

It follows, from all these results and the propositions proved in § 48, that all the
simultaneous identical covariants are composite.

74. The general conclusion as to the aggregate of covariantive concomitants is
thus :—

The aggregate of proper concomitants associated with a differential quantic or a
differential equation is composed of three classes— ‘

(A.) INvARIANTS, being functions of the coefficients of the quantic or equation ;

(B.) IpeNTicAL CoVARIANTS, being (i) fanctions of the dependent variable and
its derivatives (which when of sufficiently high order change into mixed
covariants if associated with a differential equation) ; and (ii.) functions of
the associate dependent variables and their derivatives; but any function
involving more than one dependent variable is composite ;

(C.) Mixep Covariants, being functions of the dependent variables, original
and associate (but not involving more than one dependent variable), and
of the invariants and their derivatives.

3K 2
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And when the complete set of non-composite invariants, and the complete set of
non-composite identical covariants in each of the dependent variables are retained, the
independent non-composite mixed covariants consist only of Jacobians of the first
order of any one invariant, and each of the dependent variables in turn.

Limatation on Number of Identical Covariants.

75. The following gives the limitation on the number of proper identical covariants
in the original variable when the equation is a quartic; and when there is given a
quantic, not an equation, of the fourth order the reservation mentioned in § 67 is here
indicated.

- Forthe general equation the first few identical covariants in their present forms are:—

U, = (n— l)uu"— (n —Z)u
= (n — 1P — 3 (n — 1) (n — 8) ww'u + 2 (n — 2) (u— 3)u®
U,=n—1Pu*u" —4 (n— 1) (n — 4) v®u'u™ — 3 (n — 1)* (n — 3) u?u'?
+12(n —1) (n — 3 wu? v — 6 (n — 2) (n — 3)7u'*
U;=(n— 1)4 wh' — 5 (n—1)* (n— 5) wu'v" — 2 (n — 1) (5n — 17) uduu™
+4(n— 1) (5n2 — 360+ 6‘7) u%’zu“‘—}— 6 (n— 1) (n — 8) (5n — 17) uu/ul?
— 60 (n — 1) (n — 3P wuw/3u" + 24 (n — 2) (n — 3)3 w5

76. Taking first the case of the quartic equation

d*y, du

4 d”4’+4Q3d +Q4’LL——O
we have as covariants of this equation

U, = 3uu® — 2u™,

U, = 9v®u™ — Juu'u® 4 4u'3,

U, = 27Tuu™ — 27uPu"® 4 36uu*ul — 120,
from which

U, 4+ 302 = 27u%u",
whence from the differential equation

U, 4+ 8U2 = — 108 Qqu’u’ — 27 Q,u*.
4 2 ,
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Hence
U, 4+ 38U+ 27Tu'®, = — 54ud (uQ's + 20'Q;),
= — 18u3(3uQ’y 4 6u'Q,)
= — 184 (3u®’; + 6u'8;),
= — 1800 (u); 5

so that. U, is expressible in terms of invariants and covariants already retained. And
this relation between the invariants and covariants, viz.,

U, + 8U2 + 2740, + 18430, (u), = 0,

is practically the same as the differential equation, which may thus be considered as
replaced by a relation between its invariants and covariants.
77. Taking now the case of the quantic of the fourth order, viz.,

& d*u
4; d4+4Q3d +Q{<u

(which we are entitled to include among the aggregate of invariants and covariants,
its index being §), we find, just as in the case of the equation,

U, + 38U 4 2700, + 18630, (1), = 276D, ;

so that U, can be expressed in terms of the invariants and covariants and of &, If,
then, @, be included as a fundamental covariant, and, in consequence of this inclusion,
all the proper derivatives from it be also included, then we have U, and all subse-
quent identical covariants expressible in terms of the covariants of the system thus
increased. But if, on the other hand, the quantic (and derivatives from it) be not
included, then the number of the identical proper covariants may be taken as
unlimited; and ®, and all its derivatives are composite in terms of the invariants and
covariants. This is the reservation referred to in § 67.
78. Taking, as a last example, the quantic, viz.,

d*u du
5 d5+10Q3d2+5Q4 >>>> +Q5u

(with ®; = 0 for the equation), we have
&5 Uy = dutu’ — 30un’3u" + 1202 24 — 16uSuintt 4+ 24vPu'u"? 4 9y,
U, = 4uu® — 3u'?,

11U, = 4u®u™ — 6uw's + 3u’3,
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and therefore
so that
w5 — 335U — 15U, Uy = 10Qutu” -+ Suti'Q, + °Q;
| | = w50, + Jut (uQ'y + 20'Q,) + w* (10uw” Qy — +Pu*Q",)

by (16) in its canonical form. And by (15) we have

| Q¢ =06,+ Qnga

and

in the canonical form of ®,, so that

uQy + 20 Q, = ud’, + 200, + 20", + 4@,

= 10, (u), 4+ 2u®";4 4u'@',
Hence

- w; — 53505 — U U — w0, — Jutd, (u),
= 10v® {34°0"5 4 u1/'®’y + uu"0,}
520§ (B, + 78') + 10u0'®'; + L2020, (U, 4 3u'%)

i

. . u® )
10 ! . 4
214051 + 3uU,05 + 12 o, (UQG) s+ 3@"“'@3@’3 + %“,22(”)32)

i

0% (u
= 110, + §uU0; + Fu° ‘3‘@(3‘ h

by (iv.) and (xxiv.); and, therefore,

: 6.2 (v)
Wy = k5 Uy + 1 UsUs + w0, + 10wy, + 570,08, + §ud, (u), + £t 1

3

From the existence of this covariant relation, inferences as to the number of identical
covariants may be derived similar to those made in the case of the quartiec.

Symbolical Expressions for Successive Jacobian Derivatives.

79. A very simple symbolical form can be given to the covariants, obtained by
continued application of the Jacobian prccess from two fundamental concomitants.®

* See aleo HALPHEN, ¢ Acta Math,,” vol. 3, p. 333,
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First for the case of the derived invariants, we may take (xi.) as a representative,
viz.:—
8,,=00,0,,,—1r(c+1)6,,.,6,.

To transform this we write—
@a—r(a-l-l)[a ®a-,7'--1 — c-[)a,%-—l

so that
_(il_ 163 —_ @ —retlie g’ s+1/s @ ._1_7,"_"‘_'_1_ .
dz( 0‘;’—1) - Yo o =1 " r o 4 ®aoo-,7‘—1
1m —1ZH
=1@,% ®,,
—1
- ?®Ulla q)o', r.
Hence,

d B
®,, = o® "l T (P, ,_1) .

If then we write—
0, dz = od§,,
this equation comes to be

d . ,
(I)a,r = 075. (q)a-,r—l) )

and therefore .

r—1
‘I’,,’,.‘."—-" 'glg:-:_i q)a', 1
or by re-substituting we have
| ar- 1
@70 +DEHDQ = b (@72 +irg, 3
d\r—1
=o.r—-1<®;—1/rr ;l;> {@;—2(a+l)/a®a‘l}’

the symbolical form for the derived invariants.
Similarly, for the identical covariants, it may be proved that

\N"—2
u—r(n—3)/(lz- 1 Ur — (n —_— l)r— 2 (u2/(n -1 i)r {u - 20—~ 3)/(n— I)Uz}’
’ dz

and that

» ) _ . _ dlr=2 '
| v;r{l—fl/p(n-p)} szpr 2(n_p)r z{vfa/p(n ]))Ez} [02{1—2/12(71—17)}"‘7}7’2].

Corresponding expressions may easily be found for the mixed covariants.
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SECTION VI.
ArprricaTioN TO EqQUATIONS OF LOWEST ORDERS.

Equation of the Second Order.

80. For the equation of the second order there are no invariants. So far as
concerns the reduction of the equation to a normal form, it is at once evident that, by
a literal application of the result in § 80, the equation would be reduced to the form

d*
d ~

by the solution of a linear equation of the second order. There is thus no simplifica-
tion or advantage in the reduction, for the original equation of the second order might
as well be solved, the subsidiary equation being, in fact, identical with the original.*
But it is interesting to notice how the well-known theory of the solution of the
equation of the second order is contained in the general results. In the case of
n = 2, we have, by (iv.),
A=2z2"%

By the transformation y = M the equation

d?y
da? + Py =0
18 transformed to
Pu
dz?

- 2

provided (21) z be determined by the equation
{z,m} = ZPQ.

The two independeht solutions of the transformed equation may be taken to be

/e

1 and z; and hence the two solutions of the y-equation are z’~* and »#~% Andzis
now the quotient of two solutions of the original equation.t

*® This result may be compared with the result of applying TscHIRNHAUSEN'S transformation to the
general algebraical quadratic equation.
+ See my ¢ Differential Hquations,” p. 92.
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Equation of the Third Order.

81. The general results obtained in § 30 show that, by the solution of

{n, 2} = 4P,
the equation

d®y dy
;Zﬁ-l- 3P2(§g'0+ P,y=0

is transformed to

d{’)
SsEew=o0, . ... L (22)
where
2y = u,
and
, daP
23('*)_-1)3—-%7;;

and, if we write 2’ = 6~?, the equation determining 8 is
d*é
e Tibd=0.

The form (22) is the canonical form of the cubic.
82. First, if the solution of (22) be known, then that of

d3v
672‘;’ = O . .. . . . . . . . (23)

can be derived from it, and conversely. For let u,, u,, u3 be three special and linearly
independent solutions of (22); then we have

Uy, Uy Ug = A,
i i i
Uy Uy Uy

ii ii ii
Uy, U Uy |

where A is a determinate constant. Introducing a new quantity v, defined by the
equation . .
Vg = U U’y — Uy,
we have . ) .
. ,013 _— %1u112 — uﬁulll’
,viig — ,ulu,iii2 — ,u/z,uiii1 + ) l/iluiig —_— ui2uii1 — uiluii2 —_ uiguiil’
M =ty — gt
= — O (uhuy — uyu)
- =0,
MDCCOLX XX VITL— 4. 3L
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Hence three linearly independent solutions of (23) are uqu'y — uguy, ugu'; — uuly, and
UU'y — Uy, say vy, vy, vy vespectively. This proves the first part of the proposition ;
and for the converse we have

Vs — VgVly = U, (uluﬁ2 - u2uﬁ1) — U5 (usuﬁ] — uyu'y)
= U ("’Wﬁl + vty 4 ”3uﬁ3) — ') (vy2 + vu, + 7’3’“3)

= Aul,

so that, if the solution of (28) be known, then that of (22) can be derived.

It is evident from the method of formation of (23) that it is the “adjoint” of (22),
see § 52 ; the fundamental invariant is the same for the two equations, the change of
sign not affecting the invariantive property. We thus have a verification of the
proposition (2) of § 62.

83. Second, one immediately integrable form of the equation (22) occurs when
0® = ¢z~%, ¢ being a constant, for the primitive is

u= A4 Agm 4+ Agm

where m,, m,, my are the roots of the equation m (m — 1) (m — 2) =¢. Another
occurs when ® = ¢z, in which case the primitive is expressible in terms of BESSEL’s
functions,®

84. A third case, mentioned by Brroscu1 (I c., § 5), occurs when ® vanishes ; we
may then take

u, =1, Uy = 2, Ug = 2%,
so that
U _ U
P
and therefore
Hh_Y
Y Ys

or ¥,95 = %, which is practically equivalent to a general quadratic relation
(X0 Yo ) = 0.

Since ® vanishes, we have for the uncanonical equation 2P; = 8 dP,/dx ; and, there-
fore, three linearly independent integrals of

Py

y 5 4P
dz®

2 4y =

op W
+ 3P, = 0,

# LoMyEL, ‘ Mathemat. Annalen,’ vol. 2, pp. 624635, but without any notice of the adjoint relation
between the equations of odd order considered.
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being 2’1, 2’7z, 2'~12?, are given by
&, 0*0=2dx, 6*{[0~*dx}?,

where 6 is determined by the equation
aro

Between any three linearly independent integrals there subsists a homogeneous
quadratic relation.

The Quotient-Equation for the Cubic.

85. By this is to be understood the differential equation satisfied by the quotient of
two solutions of (22). Since every solution of the fundamental equation implicitly
contains, in linear and homogenecous form, three arbitrary constants, such a quotient
will implicitly contain five (=6 — 1) independent arbitrary constants; and the
differential equation which it satisfies will therefore be of the fifth order.

Let 4, and u, be any two solutions and s their quotient, so that

Uy = UsS.

Then, by (22), we have
a?

= 7B (w5)

— ulsiii _|_ 3uilsii + 3’Miilsi + uiiils

= u,s" + 3wl is" 4 Bulis' — Ouys;
and, therefore, o o

-0 = 8" 4 3u'ys" 4 Buts.

When this equation is differentiated and substitution is made for »™, it follows that

0 = (" — 35'0) u; + 4u';s" + 6u'ist;

and another differentiation and substitution give

0= (s" — 95'® — 35'0') u; + (55" — 35'0) v, 4+ 10u" 5",

When u,, v}, »'; are eliminated between these three equations, we have

&' — 950 — 35'@, 55 — 3§@, 10s | =0, e (29)
sV — 35'0, 45" 6st
siii’ Ssii, 381

the equation required, evidently of the fifth order.
3L2
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86. Similarly, had we taken
U3 poms) ulo',

it would have appeared that the differential equation satisfied by o is the same as
(24). Hence we derive the conclusion that, if ¢ and 7 be special solutions of (24),
the primitive of it is :
s = A+ Bo + Cr
A+ Bo+ Cr

Now, if we consider these two special solutions o and 7 to be known, we have

0 = u, 0™ 4 3u', 0" + 3u', o,

0=, 7 + 3u'y 7 + Bu' 7
and, therefore,

) — 3ul, ,

a.ii.Ti — O'i‘Tﬁ o.il'i,.ri — o.i,Tiii
so that

u? (o7 — ') = constant.
Hence we may take '
(o._ii,ri . O_iTii)—% ,

o (o.ii,ri — o_i,rii) -

i

)

(ofrt — o ii)—%,

as three special linearly independent solutions of (22); they constitute a fundamental
system of integrals, and any other integral can be expressed in terms of them.
87. It is not uninteresting to see how from these forms the case considered in § 84
may be deduced ; we then have
‘ T= o’
so that

T = 200}, 7 = 200" + 20'%,°

whence, by neglecting a factor — 27, which may be absorbed in the quantities u, the

three special solutions are
2

o 4
Uy = = Uy = > Ug = —*
N o.1 O.I N G-l
Taking w, = 1/o, we have )
i o.ll
w 1 — ;_Tg b
. peill g
L L S— — [N
’Lb 1— g /3

the substitution of which in

0 = u, o™ 4 3!, o' + 3u'; o
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gives .
0= — 2{o, 2}, we, {o,2}=0.

As we are seeking the values of special integrals, it will suffice to obtain them in as
simple a form as possible. Since o may not be a constant, we therefore take o = 2,
and the corresponding values of u are

u, =1, Uy = 2, Ug =12%;
and consequently ® = 0, which agrees with the former result.* In this case the
quotient-equation is
| s, bs¥, 108" | =0 . . . . . . . (25),
Siv’ 4 siii, 6 Sii

Slll, 38“, 381
and the primitive of this equation is

A + Bz + (¢
ST N Y B+ 02 (26).
The function on the left-hand side of (25) will be called the quotient-derivative
associated with the cubic, or, more shortly, the cubic quotient-derivative ; the corre-
sponding function for the equation of the second order, viz.,

siii’ 3 sii ‘

st , 2!

which is 25'% {s, 2}, being a multiple of the Schwarzian derivative, may be called the
quadratic quotient-derivative. The consideration of these derivatives, and of others
of higher order, will be resumed later ; but it may be mentioned that, if @ denote the
Schwarzian derivative {s, 2}, ¥, (= 25'?6), and ¥, respectively the quadratic and the
cubic quotient-derivatives, then

, W, = 12s"3 (00" — £ 0%+ % 6°),
and the equation (24) is
Wy — 27s'30% — 185 O'W, = O (545"W, — 545"%" 4 90s's"s™).

88. A particular case referred to by MALETt is at once reducible to one of the cases

considered in § 83 ; for, supposing s = (a#z 4 b)/(cz 4 d) so that 0 vanishes, we have

. ”
2sist == 35”2,
and, therefore,

* The result would similarly follow, if o were taken in its general form (az + b)/(cz + d).
+ ¢ Phil. Trans.,’ 1882, p. 759.
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Thus the quotient-equation becomes
27530? = 180sisisit = 27530,

and therefore, if ® be not zero, it is given by

5\3 8¢
o=()=-@w
which is practically the first integrable case of § 83.

89. The integration of the original differential equation, as given in § 86, depends
on the supposed knowledge of two special solutions of the equation (24); and the
formulee are, for the cubic, the analogues of those quoted in § 80 for the quadratic.
It is not, however, necessary to suppose two special solutions known in order to
obtain the primitive; this primitive can be derived from a knowledge of a single
special solution . For we have

0 = uyo™ + Buliot + o' But,
0 =u, (¢ — 3010) + 4u' o™ 4 20" Bu",
and therefore
%, iy
4oigli — Gg’’2 + giglV — 2giigli — 3572@ —

0;
whence we may infer
0,614{0-, Z} o't = e Jsor{oz} i,

or
ul — 0" _715{0_’ Z}—%e%f@)dz/{o, z},

and
uz —_— 0-0-""%'{0-’ z}"%e%f@dﬂ/{ﬂ, z} ;

and an expression for u, can be deduced by the ordinary method, for two particular
solutions of the cubic are known. ‘
Similarly, from the single solution 7 of the quotient-equation we should have

wy = . -%{7, z}—%e%f@)dz/{r, z},

uy = 7=, z}—ée%f(')dz/{f, 2} ;

and an expression‘ for u, can be deduced by the ordinary method.
90. In connexion with the equation

w0 4+ 3ut ot 4 3uliot = 0,

regarded as an equation of the second order determining u,, a result, which is rather
curious from the analytical point of view, can be obtained. Denoting by p the
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quotient of two solutions of this equation of the second order, and taking one of these
solutions to be u;, we have, by the application of a well-known formula, ’

dp __ 1
dz ~ wle
— {0., z}* e—»-}f@dz/{o', z}.

But, by the result quoted in § 80, we have

ol d /ot o\ 2
sip2= ol %d;<;f> —_ %(—.)
= % {0-: Z} B
so that a combination of the results obtained gives the solutian of the equation in p,
which is

3{p, 2} + {o, 2} = 0.

Equation of the Fourth Order.

91. The general results obtained in § 830 show that, by the solution of

{zr, o} = § P,
the equation
dty a? d,
—a+ 6P2;l}/—y2+ 4P3d—;yc+P4,y=OV

is transformed to

d*u du
ga T4 - +Qu=0 . . . . . . . (27),
where a
. y=u,
and
ap
z,3Q3=P3“'%fzj,

, aQ,\ dP 2P
Q- 252 =Po—2 T 4 800 — 41 Pss

and, if we write 2" = 6~?, the equation determining 6 is
d*0

The form (27) is a canonical form of the quartic in conformity with the general
canonical form; and the quartic can be reduced to this form by the solution of a
linear equation of the second order.
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92. But the equation (27) is not the only simpler form, consistent with complete
generalify, to which the original equation can be reduced ; the following transforma-
tion presents a close analogy with the reduction of an algebraical binary quartic to its
canonical form. From previous investigations we know that, when the substitution

y=uis applied to the original equation, it becomes

du d*u

4 6R, T + 4Ry T 4 Ru =0,

where, if Z denote 2”/2', we have

2Zl (z’zRg - Pz)
7" — 87% 78 =4% (P3 — /%Ry) — 12 P,Z,

'3<R __olR> p. _ 5P

de 37T %y’
b(these three being equivalent to two independent equations), and

) dR &R 2
z*(Ré-—Zﬁ—l-%?Z—zf—%%Rf):P@—zd—g-{- %ﬁ"%f)zg-

The quantity z is at our disposal ; and, if we choose it, not as before in a way to
make R, vanish, but so as to make R, vanish, then the differential equation is

o 6R, 7Y 4+ R = L (29)

which is an alternative canonical form of the general quartic. The equation which
determines z is then
7' =827 + 73 = £ P; — 2 PZ,

or, writing Z = — v'/v, so that vz’ = 1, this is

d3v dw
P F R 4Py =0,

a linear cubic with its priminvariant = ¢ ®;. Hence, by the solution of a linear cubic,
the general quartic can be reduced to the canonical form (28); the new independent
variable z is [da/v, where v is any integral of this cubic equation ; and the coefficients
Ry, R, of the canonical form are then given by the equations
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R, = Pyv® 4+ % (200" — 0'?)

or
aRy _ [dPy _ o 3 ’
dz —<d2: 3P3>U
and '
a’R apP d?P,
B R =320 4 (1 2B 2 )

and the dependent variables are connected by the relation
y = uvk,

93. There are many special cases of these forms depending on simpler analysis ;
thus, one of such cases is that wherein the priminvaﬁaﬁt ®, vanishes, and then the
form (27) comes to be binomial, while in (28) the coefficient R, is constant.

The two forms (27) and (28) are practically the alternative normal forms of the
quartic ; it is not possible by this method to reduce the general equation to the
binomial form

%}: +ud =0,

for such a reduction requires that the coeflicients of d®u/dz%, d*u/dz?, du/dz shall all
vanish—three conditions which cannot, in general, be satisfied by proper determina-
tion of the multiplier A and the independent variable z. In the case of all the forms
which have been chosen the general assumption has been made that it is desirable to
remove from the equation the term of order next to the highest ; for any equation, in
which this might not be done, other forms could be obtained, but the analysis of
Section IL. shows that those forms adopted have the advantage of being most easily
obtained. It may be remarked that, for the reduction of any equation to the
canonical form adopted, the subsidiary equations are all of order less than that of the
equation to be transformed.

The Quotient-Equation for the Quartic.

94. The differential equation satisfied by the quotient of two solutions of the
quartic must be of order 7 (= 2.4 — 1), since each of the solutions contains implicitly
four constants in linear and homogeneous form.

Taking u, and u, as two particular solutions of the equation in its canonical form,
and denoting their quotient by u, we have

Uy = U 5

proceeding as in the corresponding case for the cubic, the following equation is
obtained, viz., :— ‘ :
MDCCOLXXXVIIL,—A. 3 M
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0= 4uﬁi1[.bi + Glbﬁl‘wﬁ + 4ui1p,ﬁi + A (Miv+ 4Q3/“'i)’ ) N

and thence, by continued differentiation and substitution,
0 = 10w " 4 100", w4 uly (57 — 12Qup") + 1 {,w" + 4%(‘223#‘) - 4QM}
0 = 200" pu™ + uy (150" — 12Qgu’) + vy {GMV —8 i (Qsﬂi> — AQyp
- 40Q3;“*ﬁ} + v, {Flw + 4 (st") 4;%((%4!3) - -10Q4P’ﬁ} ( (29)'
0 = ' (35p" — 12Qup’) + v’ {211%“ - 203; (Qsp) — 400" Qs — 4QM}
+ uh {71‘*‘& d,z(QW ) 8 g;(QM) —40 %(Qw“) —10Quu" — SOQS:“'ﬁi}
o B4 4 5 (Qup) — 4,5 (Que) — 10 7 (Qui) — 200"

J

The determinantal equation which results from the elimination, between these four
equations, of the four quantities wu,, w!, u', «™ is the equation required; it is
evidently of the seventh order.

95, Had the initial quotient relation been taken u3 = u,p, the equation in p would
have been the same as the equation in w; and similarly for an initial relation
" u, = w,\. Hence it is to be inferred that, if A, o, p be three particular solutions of
the u-equation, its primitive is _

A+ Br+0o+Dp
F=AFBrA+Co+Dp

96. In particular, if in the original equation Q3= 0, Q,= 0, so that the two
priminvariants vanish, the equation which determines p is

p T, 21w, 85pt =0 . . . . . . (30),
‘lLVi, 6 Mv, 1 5 /J:iv, 20 /ﬁﬁ
‘uv’ 5 ‘Miv, 1 0 Miii’ 1 0 ,Lbﬁ

i

) Miv’ 4 ’Liii’ 6 Mii’ 4 mn

the left-hand side of which may be called the quartic quotient-derivative. Special
solutions of the original differential equation are now

w=1, uy=2 ug=72", u,=72,
so that
p=z2 p=2 A=25;

and, therefore, the primitive of the equation (30) is
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A+ Be+ G2+ D28 51
M= AN+Bz+ UL+ D2 I (23

The generalisation to the case of the equation of order « is so obvious as to render it
unnecessary to give the forms of the equations explicitly.

97. Suppose now that three solutions A, o, p of the quotient-equation equivalent
to (29) are given, as in § 95 ; then we have, by the first of those equations,

0 = u (Y 4 4QgN) 4 4w’ N* 4 60" N 4 4u™ )\,
0 = u, (07 + 4Qq0") + dutyo + 6ut ot + duiof,

0= Uy (Piv + 4Q3Pl) + 4ui]piii _|_ 6uii1pii + 47/[/m1Pi,
and therefore

0= Uy ALY + 4Q3>\'i, Xii, N + 4ui1 )\iii’ )\ii’ N ,
v + 4Q30_i’ O'ii, ot o.iii, O'ii, o
piv + 4Q3 pi’- Pﬁ, Pi Piﬁ’ Piiﬂ p

or, what is the same thing,

0= NYONE N + 4ui1 NE NN
) i ) i 4
', o o o', o', o

i i

oY, P p P e p
Hence, writing
A —_ )\iii, )\ii, >\'i | ,

o_iu’ 0'“, 0_1

Piii’ pii, pl

we have

u* A = constant,

80 that we may take :
w=A"F L (32);

and the primitive of the general equation is
v = (A 4+ Brx+ Co 4 Dp)A—2

It is evident that no one of the quantities \, o, p may be constant, nor may any two
of them have a constant ratio.

98. It has already appeared, in § 96, that, if the two priminvariants vanish, then
relations
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for the transformed, and therefore

tor the untransformed, equations hold. (It should be remarked that these are not the
most general pair of quadratic relations; in fact, interpreted geometrically, they
represent a pair of quadrics which by their intersection determine a tortuous cubic.)
We now proceed to prove the converse—that, if two quadratic relations of the
foregoing type hold, then the priminvariants vanish.
Taking the four solutions of the equation in the form

U =AY u, =M oy =ocATh oy, = pATY
the relations given are equivalent to the new relations
o=MN, p=2»\

When these values are substituted in A, it becomes

A — N AL A
AN L G NNE, 2ANE - 202, 2NN
SAINE L T8ANAE 4= 6N'3,  SAINE 4= 6ANT, 3N
= — 12)\8,

Since any constant factor may be absorbed into the particalar solutions u;, 1wy, g, %,
we may take
u, = N7

Again we have

0= 7/51 (}\iv + 4Q3)\1) + 4ui1)\iii + G'Lﬂﬁl)\ﬁ + 4uiii1)\i’

0 == u, (" + 4Qs0") 4 4v' o™ + 6u' o + 4u o
When in the latter we substitute o =\, and from the resulting equation we
subtract the former, multiplied by 2\, the new equation is

0 = w; (BN 6X"2) 4 4o, 6NN + 6oty . 202,
which, by the substitution of the value of u,, changes to

0= — 10\*{), 2},

or, since \ is not zero, we have :
{\ 2z} =0.

We therefore take X = z; the four solutions become 1, z, 2% 2°; hence Q, and Q, are
both zero, and the priminvariants vanish.
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99. In the case of the alternative normal form (28) for the quartic, the quotient-

equation is, as before, of the seventh order; and, if X, o, p be three special solutions of
it, we have

0= u, (6R2[L“ + [Liv) + uil (IZF}RZ + 4Miii> + 6’!1«“ ii + 4%“11}1»

for p = A, 6-, p> and therefore

u') U
) | + ) = 0,
N GRAT NN AN 12NR, AN
o 4+ 6R,0", o, o 40" 4+ 120'R,, o, o
PW + GR:zpﬁg Pﬁ, pi 4 piii + 12 PiRz: pii’ pi

or, since these determinants are independent of R,, we have a result the same in form
as before
w* | N% AN, N | = constant.
W on
o_m, O'il, o

Piii’ pii, pi

The results for this normal form, which correspound to those given in §§ 95, 97, are the
same as are there given.

100. For both forms it appears that, when the two priminvariants vanish, four
solutions are given by u = 1, z, 2% 2°; hence the primitive of the equation

&P,

dPy d,
+6P2d2+6 2y+.’/<5d902 %P;z)‘:o’

the priminvariants of which vanish, is

y = FLA + B0~ dis + C ([0~ du}® + {[9-> d}7]

‘where 0 is determined by
dro

101, But, as in the case of the cubic, it was not necessary to know more than a
single solution of the quotient-equation in order to obtain more than one solution of
the original equation, so in the case of the quartic the knowledge of a single special
solution of the quotient-equation, not a constant, is sufficient to give two special
solutions. For, if p be such as to satisfy the quotient-equation, we can from the
first three equations of (29) find the value of u/,/u; explicitly and thence u, ; the value
of u, is then known being pu,. Similarly, from a knowledge of two solutions of the
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quotient-equation, three solutions of the differential equation can be explicitly obtained,
and the fourth can be derived. -

Associate Equations of the Quartic.

102. The associate equations are two in number. One of these has a dependent
variable of the type

t=| wu, Uy U Co L (33,
. .
wy, Uy, Ug

i i i
U Uy Uy }

of which there are four distinct values, so that the equation is of the fourth order.
The equation is, in fact, by § 52,

att a
a4 (Qt) + Qe =0,
that 1s,
ak dt aQ\, _
M-4Q3dz+(cgr dz)t__o L (3

The priminvariants of this are

(@) — Qs
B Q-1TE—27(—Q)=q, —2%,

or, since change of sign does not affect the invariantive character, the invariants for
the adjoint equation are the same as for the original equation.
103. The other of the associate equations has a dependent variable of the type

v=1| U, U

(35),

i i
Uy, Uy

of which there are six linearly distinct values, connected, however, by a permanent
bilinear relation

V19V, F Voglyy + V3109 = 0.

For the variable given by (85) and the quaﬁtities u as satisfying (27), it is easy to
prove that - -
. ) it + 4Q3’U =92 (ullumz — unzuml)’
and thence that

v 4 4Qg)* — 4Q' — 20Q', = — 8Q; (uljuly — uiiul,).
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104. In the case when the invariant @; (= Q) vanishes, so that the quartic is
canonically binomial, the equation in v is linear and of the fifth order only,* being

v aQ, _
Q4’ —2v dz 0,

and there. is, therefore, a linear homogeneous relation among the six quantities v.
The constants in this relation depend partly on the choice of the fundamental
system of integrals, partly on the invariant Q,; e.g., for the equation

4.
Zzl:: + u=0,
we may take
Uy = 2™, Uy = 2™, Ug = 2", Uy = 2™,
where \‘ ; ;
2m; =8 — {5 — 4 (1 —¢)i}, 2mg =38 — {5 4+ 4 (1 — o)t}}
omy =384 {5 —4(1—c)},  8m,=3+ {5+ 4(L — o)},

the indices m,, m,, mg, m, all being roots of
m(m — 1) (m—2) (m —3) 4+ ¢=0;

and the linear v relation is then

V19 V34

{5—401 —c)%}% (5+4(1—cp}’

Multiplying the equation by v, it can be integrated once, with the result

dtv dv d3v d*
Yir T @ dz3 <d_> = 2Q° +A

where A is a determinate constant. This constant depends, like those before, partly
on the choice of fundamental 1ntegmls and partly on the invariant @, ; and it changes
from one quantity v to another. Recurring to the particular example, we have

vy = {5 — 4 (1 —o)i}ie? = 02,
say ; and, substituting, we find

207 = 2¢6* + A
* HALPHEN, ¢ Acta Ma,th,,’ vol. 8, p. 329.
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or
A, =207 (1 —¢),
=10(1 —¢) — 8 (1 — ).
Similarly, we should find
Ay, =10(1—¢c)+8(1 —o)

105. In the case of the general quartic (for which Qg does not vanish) the differen-
tial equation for v is

22| o (0" 1Qu)f — 4Qu — 20Q} | = 4 (0" + 1Q)

or, expanded and rearranged, it is

d 1 dQydiv dz,,, dQ, dv 6 aQ, d*Q, 4 dQ, ng
dsb Qg dz dob - <Q* > { <dz W) <Q4 )}

[0 P dQs _2_ 0_293 PQy _ dQ, }
= ”{2 gp 4 T 16Q¢° Q, dz (2 2 de )|
‘When the covariants ®; and @, are introduced, this is
By Oy d o B el O L O 4 ver,) =
6 i 4®4d32+dz<4 6. ®s— 59, ) fv<16®3 — 2 2%% 4 9g ) 0 (36).
106. A first in_ference from this equation (36) is that
Ve Vi VM, VM Y, vy | = BO,,

v iv iii ii i
V'igs V'1g Vs Vg Vg U

v iv iii i i
Vg Ve Vg Vgs Vag Vs

where B is a determinate constant depending on the selection of the original funda
mental system of v integrals.
107. Next, the substitution

v=Vey . . . . . . .. .. (387)
changes (36) into ‘
= Y 158,27 i Y 1 208,27 = Y 4158, 27 o Y 46s, %Y - VigV=0 . . (38),

where, after long and laborious analysis depending largely upon continued application
of the theorems of Section III. as to the values of the successive derived invariants,
it may be proved that
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0,
8= o gy
S o 1 ®3,2'+ 3@),3@3.1
3 108 @33
S4«= —"1 4{'552 ®3,3+"5'174— 3®3,2+ 144®3;12+'~_® ®3,1}

Cf ,
Sa=é®4"®f—'@4+@’”35{§%?®3,4+Z§5‘€®'3®3,3 1944®3,1®3,2+ 183 0’509

+ 335030, + 155 0',%0, ;3
Se= @36{59%3-@3,5 +T‘1§ 57 O 3@3,1 + 972 ®3®3,4+ 5832 ®3, 2"" 1944@3@)‘5,1("33,
+‘9z7§§®,32®33+ T 86 ®, ®3,2+ 5184 ®8, ¥ +Z‘3‘2‘ e’ 2®3, 2_'_ '6“4‘8‘@ ®3,1}
®’2
02

2
_%@ *'“—1_6‘®32““—‘L—“_+”@—3®14+4®4
4 3

Let the priminvariants of this associate sextic be denoted by ®;, ®,, @5, g ; and
let the Jacobian 40,08'; — 30,08’,—a proper covariant of the quartic—be denoted by
¥. Then for ®; we have

Dy =8; — 48

— 1 9, 1 ®,3®3,1 1 ®3®’3,1"2@,3®3,1
= T0% g3 + 5% op i &y
1 Oy g OO 5 8,,+80,0,, —66,0,,
— 108 @33 36 @33 kP @3
@

that is, ®, is an invariant of the original quartic. Again, we have by (15) of § 22 the
invariant ®, given by

ds a*s
¢, = S4“ 2 ;Z“ﬁ'l‘%'(%x—;—‘lal’slszz:
for in the present case n = 6 ; and it is not difficult to prove that, when the foregoing
values of S are substituted, the value of ®, is

b, = —120, ) —%0, . . . . . . (40).

1
16200, (85,5
I give below the values of ®; and @, founded on (16) and (17) of §§23, 24 ; the
analysis is long for each of them, but, as it is of a character precisely similar to that
for ®,, it is not reproduced here. The value of @ is

B, 0, .0,
(I)5= W%W@S: 57 ig%‘é‘ 2 52"l-'i?@ A * * (41)’

and the value of & is
MDCCCLXXXVIIL—A. 3 N
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1
_— 1 -89 1 2. ..825 3
(I)6_'®gg 122472 ®3,5+428652 ®3,3®3,1+ 11907 ®3,2 1333584 ®3,1}
‘ 2
SRS SR LR\ S OUINE W' S H i (42).
16 -3 8 @32 @42 72 @4@32

These values show that all the priminvariants (and therefore all the derived
invariants) of the associate sextic are included in the invariants of the original
quartic; and since the variable of the sextic is covariantive, and is included among
the covariants of the given equation, it follows that all the covariants, identical and
mixed, of the associate sextic are composed of covariants and invariants of the original
quartic. Hence, the theorems of § 62 are verified for the linear quartic.

108. There are many other equations possessing covariantive properties similar to
those in the associate variables ; among such equations are those, for instance, which
have their dependent variables composed of one or more than one of the aggregate
of dependent variables, original and associate. Thus the equation, which has
for its dependent variable the square of the dependent variable of the equation of
order n, is of order 4n (n 4 1), and all its invariants are invariants of the original
equation ; and the reduction of such an equation, when obtained, to its canonical form
will be very similar to the reduction to its canonical form of the associate equation
which has, for its dependent variable, the variable associate of the first rank of the
equation of order n + 1. Thus, for instance, if we write ¢ = u* where

W 4 Oy = 0
it is easy to prove that the equation in 7 is

d 1 &, 3d [ dt Jiit —0:
i |6 e 200+ § Z(0F) |+ 2 — sor=0;

and the verification that the priminvariants (and therefore all the concomitants) of
this equation are included among the invariants of the quartic would proceed on lines
very similar to those of the verification for the quartic.

109. For the general differential equation of order 7, the equation satisfied by the
quotient of two solutions is of order 2n — 1; a knowledge of n — 1 special solutions
M, Ny, .+ .o, Ny gives the primitive in the form
At AN AN+ Ay
T By BA B+ .+ B Mg

A

and leads to the derivation of n particular solutions of the original differential equation
in the form

1 1 1 1
. A n’ }\'1A 'n, >\2A n’ ce, )\71—1A n’
where
— (n—1) (n—2) ii i
A= ‘)\1 s )\1 I >\1a )\1:
2? 27

_ _ . i
)t;n 1), }"(Zn 2)’ e, }\n )‘

AP-D \0=2) A\l %

n=-12 “p—12 """ Tp_i "Tn-—1
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And in the case when
N
1

> 1
k2
7

the degenerate form of A is easily proved to be

('— J-)”-l]_f 218!... (n — 1)1 }\’l%n(n_l),

so that we may take

)\ —in@m-1)
uy =M\ .

As in §§ 87, 98, it would be proved that \, = z and that all the prilninvariants vanish.

It is not proposed to consider here what are the possible methods of forming for
the general equation of order n the associate equations in the different variables,
nor therefore to verify, as was done in § 107 for the quartic, the general theorems
enunciated in § 62.

SECTION VIIL

QUOTIENT-DERIVATIVES.
The Derwatives of Odd Order.

110. Writing down the series of quantities with binomial numerical coeflicients

s l, s
‘ s, 28 |, s
‘ s 8st l, 3st , S
sV, 48, 6st |, 46 , 8
s, sV, 10s% |, 10st |, 5s , 8
s, 6sY , 15s% , 208 |, 158 |, 65 , s
s 7st ) 21sY , 858V |, 3hst |, 21st |, 7s' , s
st g 28s" | 5657, 70s™ |, 568, 28s%, 85 , s

six , 9 sviii s 36 svii , 84 Svi

, 126s" |, 12657, 84s", 386s" 9§, s

and forming determinant squares as above, viz , the first element of the first line only;
the first two elements of the two lines after the first one ; the first three elements of
3 N 2
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the three lines after the first two ; the first four elements of the four lines after the
first three ; and so on, we obtain the series of quotient-derivatives connected with the
linear equations of successive orders.

The first* of these functions, viz, s, is the linear quotient-derivative ; in conformity
with the notation used for the remaining functions, it will be denoted by [s, z],.
Then

5,2, =0. . . . . . . . . . . (43)

is the differential equation satisfied by the quotient of two solutions of the equation

du
a =
and the primitive of the equation (43) is
A i
S = ’]’3 ) . . . . . . . . . v. (43 )
where A and B are constants.
The second of these functions, viz. :—
| S“, zsi ,
\ Sﬁi, 3 Sii

is the quadratic quotient-deriirative (§ 87); it will be denoted by [s, z],, Then

[s,2,=0. . . . . . . . . . . (49

is the differential equation satisfied by the quotient of two solutions of the equation

d?u

=0

and the primitive of the equation (44) is

A+ A

§= B, + By (44),

where the coefficients A and B are constants.
The third of these functions, viz. :—

i i i

st 38, 3s!
i - o

61v, 4 1’ gt

s, 5sV, 10s%

% This function is inserted merely to make the enumeration complete.
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is the cubic quotient-derivative (§ 87); it will be denoted by [s, 2], Then

[s,23=0. . . . . . . . . . . (45

is the differential equation satisfied by the quotient of two solutions of the equation

a3
Pu_y,

dz?
and the primitive of the equation (45) is

_ Aot Ap 4 A Co 4By,
B, + Bz + Bg?

where the quantities A and B are constants.
Similarly, in general, the nth of these functions is the ntic quotient-derivative,
which will be denoted by [s, z],. Then

[s,2,=0 . . . . . . . . . . (46)

is the differential equation satisfied by the quotient of two solutions of the equation

dmu
dzn

=0,

and the primitive of the equation (46) is

A AR AL+ L+ A,,_lz”-l
T By+Bz+Bet+ ... + B, 27!

(46Y),

where the quantities A and B are constants.* The equation (46) is of order 2n-1, of
course non-linear, though it is of the first degree ; its primitive (46') involves effectively
2n—1 arbitrary independent, constants.

111. Inthe case of the quadratic derivative, the primitive (44') of the equatlon (44),
obtained by equating the derivative to zero, is symmetrical gua function of the
variables in s and z. Regarded in this light, the variables in the equation may be
interchanged, so that the equation

[s, 2, =0
implies the equation
[z, s],=0,

* This result was given by Capr. MacMAHON in a note, unknown to me at the time of reading of this
memoir, in the ¢ Philosophical Magazine’ for June, 1887, p. §42.
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and the one derivative is a factor of the other; in fact, we have the relation
ds\6.
[s, 2}y + (g;) (% sl = 0.

On account of this property the function [s, z}, is called by SYLVESTER a reciprocant.

In the case of derivatives associated with equations of order higher than the second,
the primitive of the differential equation, which is obtained by equating the derivative
to zero, is not symmetrical in regard to the dependent and independent variables ;
they may not therefore be interchanged, and hence these derivatives are not recipro-
cants of any of the known types. It is elsewhere * shown that the connexion between
the two classes of functions is constituted by the property that the quotient-derivatives
are combinations of homographic reciprocants, such combinations being, however,
illegitimate for the preservation of reciprocal invariance.

Transformation of the Derivatives.

112. By means, however, of the primitives of the derivative equations, relations
are easily obtained which suggest some of the transformations of the derivatives.
For, taking the most general change possible, viz., of both the dependent and the
independent variables, suppose (i) that s and z are connected by the equivalent
relations (46) and (46'), (i) that o and s are connected by the equivalent relations

[o,8]l,=0
and
_ Co+Cs+...+ Cpysn?
TT D, D +... + Dy st

and (iii) that z and x are connected by the equivalent relations

[z, w]p =0
and
_ B+ Ex+ ... + B !
T ¥y A+ ¥z 4 Fart”

Then the algebraical relation between o and « is

G+ G ...+ Gy ]
T H, +Hz ...+ H_ oL’

p—l=(m—=1)(n—1)(p—1);

and the differential relation is consequently

where

[o, ], = 0.

* ¢« Homographic Invariants and Quotient-Derivatives.” ‘Messenger of Mabhehaa,tics,’ vol. 17, 1888,
pp. 154-192.
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Hence we have the result that, if

[o, s],=0, [s, 2], =0, [z, x], =0,
then
[o, ], =0,
where
p—1l=(m—1)(n—1)(p—1.

113. But, on the other hand, while the algebraical relation between o and «
involves the proper number of arbitrary constants, they are not in general equi-
valent to 2p — 1 independent constants; for, by the method of construction of o,
all the constants which enter into its expression are composed of the other
(2m — 1)+ (2n — 1) + (2p — 1) independent arbitrary constants, a number in
general less than 2p — 1. There is therefore not, in general, a justification for an
extension of the result so as to include its converses in the form that, if any three of
the derivative equations be satisfied, the fourth is satisfied ; and it is only when there
are certain coefficient-limitations on the form of o as an algebraical function of x that
the converse can be asserted. An illustration will be given in § 118.

114. The simplest case which occurs is that in which m=2 and p=2; for
then p = p, and the deduction to be made is that, if

[3} z]n =0,
then
as+b e+ f -0
os+d gz+h ’
where @, b, ..., h are constants. The converse is also true; for in homographic

transformations an interchange of the transformed variables leaves the functional
character of the transformation unaltered. Since then these homographic transfor-
mations do not alter the order of the derivative equation, we are led to investigate
the modification caused by them in the derivative itself.

Considering then, the ntic derivative [s, z],, let us find the effect of a homographic
change of the independent variable given by

e+
_gz+h_x(z)’

in CAYLEY'’s notation. Now, as in §11, we have

dms T B, . d's
dz’”‘ r=1 *! dar

where
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my 1

= coefficient of p” in {x(z + p) — = (2)}"

_ (- 1
'L(9Z+h)(9z+h+9p)
_ N I
' L pearysci Kl s kP
= (—1)" m— 11 (eh — foy gm—r |
- m—rler—11 (g2 + kyntr
so that, writing
_ eh—Jy _ 9
T (gz+ R and ¢“gz+h’
we have
' _, mlm-=1!
. Bm”:(_l)m rr—l!m—frlgd) "
Hence
dms Lt m’fm—lr drs
— = — 12— m—r .,
dzm_rgl( 1) rlr—1!m—¢! 0 ¢ dx’

115. The method of reduction of the determinant transformed by the substitution
of this last relation is conveniently indicated by the reduction of the cubic derivative.

Denoting ds/dz, d?s/dz?, . . . as before by s, ", . . . and ds/dx, d?s/da?, . . . by s, sy, . .« .,
we have
[S,Z:IS:' 033iii — Gﬁzqssﬁ + 60¢28i, 3{098ii —_ 20(#31}, 3081

04'Siv — 1203¢sﬁi + 3692¢2SH
— 246 ¢s;,

04'3‘, - 2004(#8“ + 12008¢28iﬁ
— 2400%%s; + 1200,

4:{038ﬁi -_— 602¢Sﬁ + 60‘;6231} N 6{02811 — 20(]5231}

— 246ds;},

3692¢281i ]. 0 { Hgsiii - 69g¢8ﬁ
+ 6047}

Multiply the second and third columns by \; and X, respectively and add to the first,
choosing \; and A, so that s; and s; no longer occur in the first constituent of that
column ; it will be found that s; and s; have disappeared from the other constituents.
The value of \; is 2¢, of Ay is 2¢% Multiply the third column by A; and add to the
second, choosing A3 so that s, no longer occurs in the first constituent of the new
second column ; it will be found that, for the value of 2¢ of XS, s; has disappeared
altogether from the second column ; and we have

[s,2]s=] Psu;,
Otsy — 493¢’~9ﬁi,
058v - 1094¢81v~|— 2003¢28iii,

36,

4033ﬁi —1 262 ¢Sﬁ,

504:31‘,— 4002¢sﬁi+ 6002(#26}1,

30s,

6Pps; — 120¢s;

1083sy; — 600%¢psy
+ 60047,
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Treating the rows of the new determinant in the same way as the columns of the
old were treated, we find
[s, 2]y = Psy, 3Psy, 30s
Ots,, 4BPsy, 66
s, 5bs., 106y

In the right-hand side a factor € can be taken from the first column, 62 from the
second, @ from the third ; and then #° from the first row, ' from the second, #® from
the third, giving as the power of 6 the sum

B+2+1)+(0+14+2)[=130B+1)+33(3—1)]=23;
so that
[s, 2]y = 6 [s, x];,

ez + [ _ (92 + B)*®
[s’ gz+h]3‘ @G—gp B (D)

or

116. The result of the reduction of the ntic derivative is

ez + 2z + h)"
[s, “ +J;Z] = gk_ f;)”,.. ek (48)
The method is similar to that used for the cubic derivative. Thus the numerical
factors which determine the algebraical multiples of the second, third, fourth, . ..
columns, to be added to the first in order to remove all differential coefficients of order
lower than ds/da”, are respectively n—1, (n—1)(n—2), (r—1)(n—2) (n—38), .. .;
the numerical factors which determine the algebraical multiples of the third, fourth,
fifth, ... columns, to be added to the second in order to remove all differen-
tial coefficients of order lower than d*~ls/da»~), are respectively {2!/11} (n — 2),
{81211} (n—2) (n—38), {48111} (n—2) (n—38) (n —4), ...; the numerical
factors which determine the algebraical multiples of the fourth, fifth, sixth,. . . columns,
to be added to the third in order to remove all differential coefficients of order
lower than d»—2s/da"~%, are respectively {81/21} (n — 8), {41/2121} (n — 3) (n — 4),
£51/3121} (n — 8) (n — 4) (n — 5),. . .; the corresponding multipliers for the modifica-
tion of the fourth column are

6!
412!

‘E(n—-él), E!—i(n—4)(n—5),

3 319 (n—4)(n—5)(n—26), ...;

and so on.
MDCCCLXXXVIIT,—A. 30
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117. By somewhat similar work it may be proved that

as + b __ (ad —bey* -
LS L zl = e+ 8,20 - - . . . . . (49),

and the combination of (48) and (49) gives

[as b e +f} . (ad _ b(})” (gz + h)%z [S’ z]’t (XXVo),

es+ d gethly (eh— fo)" (cs+ d)»

which is the general formula of transformation for the simultaneous homographic
transformation of the dependent and the independent variables.

118. The following simple case will sufficiently serve to illustrate the kind of
limitation, which prevents the converse of the proposition of § 112 from being, in
general, true. From the general proposition it follows that if

[0,s]y=0 and [s,2},=0,
then
[o, 2], = 0.

The question then arises : What are the conditions to be satisfied in order that
[s, ], =0
may be & necessary consequence of
[o,s];=0 and [o,x]y=0"?

Taking the two latter as given, we may replace them by an integral algebraical
equation :

as* +2bs + ¢ As*+ 2Bz + C

o'+ s+ T Aat+ 2Bx +C

(50),

the two fractions being the values of o, corresponding to the two derivative equations.
And, if it is to be necessary that
[s, 2], =0,

then this algebraical equation (50) must be equivalent to one or more equations of the
form -
“wt B L)

Hence, when the value of s given by (51) is substituted in (50), it must becorne an
identity ; the conditions for which are
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ao® + 2bay + cy® = AA a'e? 4 200y + ¢'y? = A’
aefl + b (By + ad) + cyd =B », a'af3 +'2b'(,3'y—|- ad)+ cyd = \B &,
af? 4+ 2688 + ¢8* = \C a' B+ 20'B8 + ¢'8* = A\’

six equations, apparently, and really five equations involving the ratios of the four
quantities a, B, vy, 8, so that two conditions must be satisfied among the constants of -
equation (50). We at once find

N (AC — BY) = (a8 — By)? (ac — 1Y),
N (AC — B'2) = (a8 — By) (a'd — 1),
N (AQ 4 A'C — 2BB) = (a8 — By)* (ac’ + a’c — 2bV),

and therefore the two necessary conditions are

AC—B _ AC+AC—92BF _ AC_B?
ac—8  ad +de—200 T a'd —b?°

Assuming these conditions to be satisfied and denoting the common value of the three

functions by P? we have
ad — By = \P.

To find the value of the ratios « : 8 ty : 8 we write
7=a99 8=18¢’ “=:8¢’:

so that 0, ¢, ¥ are the quantities to be determined. The first of them can at once be
obtained from : :

A+ 2Ot A

o + 200400 T A
and the second from

o+ 2bp +cp®  C

o+ 20'p +'p* T O

From the first three equations we have for any value of ¢
a(a+ 8 + 2b (x + £B) (y + £8) + o (y + £3)" =\ (A + 2Bé + C&)

It follows that
cAP? = AB? — 2Baf + Cu?;

and similarly from the second three that
\P? = A'B? — 2B'afB + C'a’

(It may be remarked that these are the types of the equations which would have
been obtained if substituting for « in terms of s from (51) had taken place in (50)].
302
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Hence ¢ is determined by
A =2B¢y +Cy* ¢
N 2B + O o

It may be noticed, though the fact is not directly connected with the present inves-
tigation, that the equation (50) is, if rendered a non-fractional equation, apparently
the most general quadrato-quadratic relation between s and @. But, as a matter of
fact, in order that the most general quadrato-quadratic relation of the form

$* (age® + 2bge + ¢o) + s (a2® + 20w+ ¢)) + (agx® + 2byx +¢) = 0

may be expressible in the form (50), the condition

must be satisfied. The proof of this is easy, as is likewise the verification that the
coefficients of the non-fractional equivalent of (50) satisty the condition.

Derivatives of Even Order.

119. All the derivatives which have hitherto occurred have had the order of the
highest differential coefficient of the dependent variable entering into their expression
an odd integer, and the reason of this is that the dependent variable is the quotient of
two solutions of a linear differential equation having its right-hand member zero, so
that each solution contains implicitly in homogeneous form = arbitrary independent
constants, and the quotient of the two therefore implicitly contains 2n — 1 arbitrary
independent constants. Hence the differential equation satisfied by the quotient is of
order 2n — 1.

But, if we take the quotient of two solutions of the equation

dary _
dw”+ e =X

(where y is not zero), these solutions are no longer linearly bomogeneous in the n
implicit constants, and the quotient will therefore contain implicitly 2n independent
arbitrary constants. Hence the quotient-equations will be of even order; and like-
wise the quotient-derivatives, if they exist.
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By the transformations of § 11 the foregoing differential equation becomes

dru
ag;—k .=V,

where
MV =x;

and, in order to make the term in d*~lujdz*~! disappear, the relation \z**~D =1 has

been adopted ; hence we have
7+t — X-

The variable z is at our disposal; and, though in the general theory a choice of 2
fundamentally more effective than the following can be made (as was done in §§ 29, 80),
yet, our present aim being the deduction of the quotient-derivatives, we shall here
assume that z is so chosen as to make V a constant a, a choice which appears to render
most simple the required deduction. We then have

2= | (/a1 da,

and the equation takes the form
Ay, + —
dr T T

Let p be the quotient of two solutions, say u; and wu,, of this differential equation,

so that |
u1=P+A1U]+A2U2+.n‘+AnU”,
u2=P+BlU1+B2U2+...+BnUn,

Uy = Uy o

Then the differential equation satisfied by u is of order 27 ; and it can be obtained in
a manner similar to that employed in §§ 85, 94.

The quotient-derivatives will be obtained for correspondingly limited forms of
differential equations, viz., those in which the left-hand side is constituted by a single
term, which is that of highest order in the differential coefficient.

120. Example I.—For the equation of the first order

du o
dz
we have, since u, = u,u, the equation
— {
o = pa + Up

or
0= (p—1)a + up'
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Differentiation of this gives
0 = 2o + upt;
hence .
9 f"i, H‘ﬁ

or, if we take a new variable s = p — 1, this may be written

(52).

s, 26

Now from the original equation we have at once

%1=OLZ+B,
u, = az -+ C,
and therefore
M A iy .
8—7/,1 I_B-{—az (52

this relation, in which A and B (and from the point of view of (52) & also) are
arbitrary constants, is the primitive of the equation (52). It evidently contains two
independent arbitrary constants.

The linear derivative was s', being connected with the linear equation du/dz = 0;
the new derivative

sy, 8 >= L(s 2) ]
st 26 '

which is connected with the less simple form of linear equation, will be called the
hyperlinear derivative.
121. Example II—For the equation of the second order

d?
2t Qu=a

we at once have, by double differentiation of the equation u, = u,u, the relation
0= (p—1)a 4+ 2pu) + p'u,
Successive differentiations of this and substitution for ", give

0 = e + Sp'uly + (W' — 2u'Qy) uy,
0 = G}LHCL + (4Miii — 2‘“1((22) ui]_ + (Miv — 5IL11Q2 — 2/"‘1Qi2) Uy
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Hence the equation satisfied by w is
l‘(/“ s 2 Mi 5 i,l, -_— 1 = 0-
H‘ﬁi — 2#’1Q2 , 3Mii , 3""
l p‘iv —_ 5‘1’(’iiQ2 — 2MiQi2’ 4Miii — 2MiQ2’ G“ﬁ

The quotient-derivative for the present case—it will be called the hyperquadratic
derivative—is obtained by selecting from the left-hand side of the quotient-equation
the terms independent of Q, and QY and by writing s for w — 1; thus it is

s, 2¢, s = [(S: z)]z 5
s gsl 3
siv, 4 Siii, 6 Sii

and then |

[(s,2) =0 . . . . . . . . . . (58)

is the quotient-equation when Q, 1s zero. But in that case

wy = Ay + Az + b2,
u, = B, + Bz 4 07°,
where a = 20, so that

Uy A+ Be ‘ ;
S = =577 08 Co . (58,

where, from the point of view of (53), A, B, C, D, b are arbitrary constants, is the
primitive of (53), containing four independent arbitrary constants.

122. Proceeding in this manner we obtain for similar linear equations of successive
order a series of derivatives in each of which the order of the highest differential
coefficient entering is an even integer; and their form is indicated in the following
scheme, similar to that of § 110. The hyperlinear derivative is obtained by forming
the indicated determinant from the first two elements of the first two rows ; the hyper-
quadratic derivative is similarly obtained from the first three elements of the three
rows after the first ; the hypercubic derivative similarly from the first four elements of
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l s, s ,
*l s, 28 |, s ,
i gt 8, 38 ! , 8 ,
sV, 48t 6t F 4t , s,
s* ., 5s% 10s® | 1ost |, Bs', s,
s, 6s" , 15s™ , 20sT |, 15s% 6§, s,

the four rows next after the first two; and so on. And the primitive of the
hyper-ntic derivative equation

(2], =0 . . . . . . . . . . (54)

is

Ag+Az+ ... +A,_ 201 .
S—Bo+Blz+...+Bn,1w1+czm S

where from the point of view of the derivative equation (54) the constants A, B, ¢

are arbitrary.

Relation between the Derwatives of Even and of Odd Order,

123. In the integration of the derivative equations the following connexion between
the two sets of derivatives is of interest. Let

[Sﬂ, ZJn+1 == O
be the equation in the (n <+ 1)tic derivative of odd order, and

[(o4 )]s =0
the equation in the hyper-ntic derivative of even order; their primitives are of the
form

Aj+ A+ ...+ A
By+Bz+ ... + B

Sy =

and
- _ G +Ce+ ... +C_ !
"T Dy+Der+ ... + D
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respectively, where all the constants are arbitrary. Hence, from the point of view of
an integral equation, we may write

' g, = 8§, = Em
where E, B, = A,, and so E, is an arbitrary constant. It therefore follows that

[(ss — Eu, 2)]s = 0
is a general first integral of

[sm 2]us1=0.
Again
1 _F=u
o n=— w1l

from the point of view of an integral equation, the value of F, beihg DO/CO, so that it
is an arbitrary constant ; hence
ERTI
o 2 —

[(ow )] = o.

is a general first integfal of

Combining these results, we see that

[S,,_l, z]ﬂ—l =0

Is a general second integral of

[84 2]u = 0,
where
S T R sy
Similarly

[Sumg 2lucg =10

is a general fourth integral of the same equation; where

1
F, + 2B,_ +

s = E, + p 5

Fo_ 4 25,4

and so on.

Similar results are obtainable for the equation which involves the derivative of even
order.

MDCCCLXXXVIII.—A., 3 P
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'SECTION VIIIL

CHARACTERISTIC KQUATIONS SATISFIED BY CANONICAL FORMS OF INVARIANTS
AND COVARIANTS.

Reproduction of Canonical Form.
124. When the differential equation of order = is taken in its canonical form

dru ! dr=34
dz" +3In_3IQ3dzn_3 +- ,.=0

and is transformed so as to have a new dependent variable # and a new independent
variable £, then, from the investigation in §12, it follows that, if we take

dE\—3n—1) =% —
%:7;(;5) :nf =D e e e e s (55),

the new equation will be without the term in d*~'x/d&*~; and, from the investigation
in §30, it follows that, if £ be determined by the equation

{& 21 =0,

the new equation will be without the term in d*~%y/d¢*~%, that is, the new equation is
in its canonical form. The last equation gives

az + b
£=2"0 C L (6),

where @, b, ¢, d are the constants ; and the equations (55) and (56) give the relations
by which a canonical form of differential equation can be transformed into a canonical
form.

125. As we are proceeding to investigate, by the method of infinitesimal variation,
the partial differential equations which are satisfied by the concomitants in their normal
forms, it will be convenient to adopt the process of §19 and make ¢ nearly equal to .
Thus, taking in (56) the determining conditions b =0, @ = d, ¢ = — § ed, where € is
infinitesimal so that its square may be neglected, we have
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and all higher derivatives are zero to the order of small quantities retained. We now
have

w=mn{l—1%(n—1)e} N (14
Now, by §114, it follows that
dam _ m!m—1! —
d;”;_r%l(—-l)m ,1"'7’—-1!%—7‘! ¢ rdff

for the relation (56), where, in the present case,

ad —

0—(d+cz)

=14 e,

and

Hence, to the order of small quantities retained, it is necessary to consider on the
right-hand side of the transforming formula only the terms arising from r = m, and
r=m — 1; and thus

m -1

L—%ﬂ—ﬁ”‘@—-ﬁm $m (m — l)d&_m :
dm—1
dfm 1°

= (1 + mez) cl,fm+ sm(m—1)e—

Applying these equivalent operators to (57), we have

=(1+mez)[{1—_%(n—1)ez}§m Q(n—l)em J+ m (m — I)e L

Eml dgml
=1
=[1+{m-%(n—1)}ez]jf m(n—m)edgm’z . (5B)

Similarly, if v, be the associate variable of rank p—1 and index — & 5P (n —p),

and if 7, be the same transformed associate, we have

drv, p
=l m—dpm—p} &) G —dmip(—p) —m+ 1T (59).

Again, if ©, be an invariant of index u, and if ®, be its transformed value, so that

@, (¢) (d—f)
3p
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we have

an® and dn=1d

&~

126. Now, in discussing invariants and covariants in their canonical forms as solu-
tions of partial differential equations, we may, so far as they are functions of the
coefficients Q of the original differential equation, cease to consider them as explicit
functions of these quantities, and can consider them as functions of the priminvariants
and of differential coefficients of the priminvariants; for each of the coefficients Q
can be expressed uniquely in this last form. Thus we have

Q3= 0,
aQ d*Q.
Q=0+ -0,
a8, | 90 0y

=®5+% dz+ 7 dzgn’

and so on.
Form-Equation and Index-Equation of a Concomitant.

127. We may therefore define the most general covariant possible when in its
canonical form as a function of (i) the dependent variables, original and associate,
and of their differential coefficients, and of (i) the priminvariants and their diffe-
rential coefficients, which is such that, when the same function is formed for the trans-
formed differential equation in its canonical form, the relation

(o, w00, 8,0 )

(B o) ® ®
= (7 Sy, e ) L L (61)

is satisfied, N being the index, and the bracketted numerical exponents denoting
differentiation of corresponding order with regard to the respective independent
variables. _ }

128, As an example, sufficiently indicative of the general case, consider identical
covariants which are functions of « and its derivatives alone, so that we may write

. dE\°® ..
bttty (oo
=(1 +°'€z)¢(779 . )
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Substituting for «, v, »", . . . from (58), and expanding with a retention of terms up
to the first order, we have, as the additive part of ¢ which is given by those terms
arising in connexion with %,
0
{m—%(n—1)} ey ,_41 — $m (n — m) enW‘”;;%
Combining these and comparing the two sides, we find that the finite term on each
side is ¢ ; and the remaining conditions therefore are

oo
3 im—f(n— 1" 5 0= 0¢,

0
21’7}%(% — m) 7)(’”_1) 5—%; = 0.

m=

Reverting to the original variables v and z, we may write these equations in the forms

b (n—Zm—l)u"”)a:{’)-[-Zo-qS—O)

m=0

ce e 2).

3 m(n — m)un DAt o ﬁ - )
mo=1 a()_ J

The latter of these two equations determines the form of a covariant ¢ ; the former
determines its index o

129. The process of obtaining the differential equations satisfied by the function ¢
of (61) is similar to the foregoing; and the result of the work is that the general
concomitant ¢ of index \ satisfies the equation

M= 3 [tn =t 03w ]+ 2 [r = b (=20 5

+3 s [(s—l— 1) 09 g@%] . (xxvi),

p=38 s=0

which may be called the index-equation, and also satisties the equation

m=n=1 —1r=nl/plan—p!-1

o6 1 7=z
b3 {m(n — m) u‘m‘l)gﬁi)}'l- YE

m=1

d
[ﬂ” {p(n—p)—r+1in""P avfn]

[(zf,,+s—1)@<s-1> g‘%] . (xxvil),

r=1

which may be called the form-equation.
The equations (62) are at once seen to be particular cases of (xxvi.) and (xxvii.)
for concomitants ¢, which involve w and its derivatives alone. For the identical
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covariants in each of the associate variables there are pairs of equations exactly
similar to (62); and the equations which determine the invariants are

o 0
= [(3 1) 00 gf@%] =\ ]

(63).
5" [s(zﬂ+s~1)®;s—l>~a—%%,]=o ]

180. The index-equation involves operations the only effect of the application of
which is a change in the numerical coefficients of the various terms in the concomitant
to which they are applied. The form-equation involves operations which replace any
derivative of an element of the function by the derivative of that element of order
next lower ; and, if the aggregate of the orders of the various derivatives entering
into the composition of any term be called the grade of that term, the effect of the
operations in the form-equation is to replace such a term by a set of terms of grade
less by unity.

From the facts that both the characteristic equations satisfied by a concomitant
are linear and that the algebraico-differential operations which occur in them leave a
term unaltered in order in the variables and degree in the invariants, coupled with
the preceding conclusion as to the modification of the grade of the term, we can
derive the inference that every concomitant, if not irreducible, can be resolved into
sums and products of irreducible concomitants each of which has the property of
being an aggregate of terms such that, for the aggregate, the orders of the different
terms in the dependent variables are separately the same throughout, the degree in
any invariant is the same throughout, the dimension-number for every term is the
same, and the grade of every term is the same. For instance,

Ae, v, + B8, Up,® + C0,2u*V, , 4+ Duv,0,(u),0,(v,),

is a concomitant of index 2u + 2 — (n — 1) — p (n — p); the different terms are
resoluble into products of concomitants each of which has the preceding properties.
Hence for every irreducible concomitant there are three kinds of numbers which are
characteristic, viz., the separate orders in the different dependent variables, the
separate degrees in the different invariants, and the grade of the concomitant ; and a
knowledge of these numbers gives the dimension-number, and thence the index, of
the concomitant.

Applications of the Differential Equations.

181, Example I.—The identical covoriants which are functions of u.
In order to obtain all such identical covariants, it is necessary to obtain the most
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general solution of the equations (62). For this purpose, proceeding by the ordinary
method, we have to obtain a series of integrals of the subsidiary equations

—-Eé Y _ du’ _ CZIM/, _ du/// »
0 m—=Du" 2(mn—2)u " 3 —3u’

Now integrals of these are
A=u,
=(n—1)Au" — (n — 2)u’?

so that by the theory of partial differential equations the most general solution of the
form-equation in (62) is

¢ = function of u, (n — 1) uw” — (n — 2)u'?,

The number of independent integrals of the subsidiary equations necessary for the
construction of this most general solution is the same as the highest order of differ-
entiation that occurs ; each of the integrals when freed, by means of preceding integrals,
from all but one of its arbitrary constants itself furnishes a solution of the form-
equation—a conclusion from the ordinary theory of partial equations of this type.
With each new derivative of # of higher order supposed to occur in the concomitant,
there is a new subsidiary equation ; and consequently a single new integral is necessary,
which must of course include in its expression this new derivative. The earlier
investigations show how to derive such a function ; for, by taking the Jacobian of «
and the derived covariant involving what has hitherto been the derivative of highest
order, we obtain a function which involves the new derivative, is invariantive, and so
will furnish the new integral of the subsidiary equations.

Tt thus appears that any identical covariant which involves at the highest the mth
derivative of u can be expressed in the form

é(u, Uy, Ug, ..., Uy s

and, as this result is true for all the values of m that can occur, we derive the conclusion
that the series of successive covariants already given is a complete series, that is, any
identical covariant can be expressed as an algebraical function of terms of the series.

1382. These fundamental functions of the series which come after Uj are not, how-
ever, in their simplest form; they can be replaced by others, necessarily their
algebraical equivalent and involving the proper derivatives of w, but of lower order
in the variables. In fact, if the grade of the fundamental covariant be an even
integer and equal to 27, the covariant may be taken in the form

gr = w® — w0 g U= — A (=1 U L (= 1), (w9}
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the sabstitution of this quantity, which must be a solution of the differential form-
equation, leads to the condition

u _@r=s+1D(n=2r+s-—1)

s s(n —s) =1
so that
el — 20 +s—1ln —s—1!
O = o sln—9r —1lsln—11°
since oy is unity ; and this is true for s=1, 2, ..., 7, so that ¢, is determinate and

can replace U,. For instance,

4(n —4)

3d(n—4H(n—3) .,
1(n—1) v

12 —1)(n—23)

¢, = uul¥ — wu" 4+ %

and this is functionally the same as U, reduced, for it is eaéy to verify that

(n—:

U4 = (77; — 1)3 u2¢4 — 6 2)2 U22-

The index of ¢, is evidently 2 — (n — 1), which should, therefore, be the value
of o in the index-equation of ¢, ; and the substitution of ¢, and comparison of
coefficients of (— 1) au®u® =9 gives

204+n—2s—14n—2(2r —s)—1=0,

which is true for all values of s, so that with this value of o the index-equation is
satisfied.

1383. But when the fundamental covariant is to involve an odd derivative of u as
its highest, so that the grade is to be an odd integer, say 2r 4+ 1 (which is the case
with Uy, ), we may not take ¢y ., to be of order in u so low as the second ; for, with
an arrangement of terms similar to that in ¢, the last of them would be of the type
wu"* Y, When substitution takes place in the form-equation, this term gives rise to
a term {u®}* which will not occur in connexion with any other term in ¢, ,, and,
therefore, for the satisfaction of the equation, would have a vanishing numerical
coefficient. The other numerical coefficients would similarly vanish, and the assumed
form of ¢y, ,; would be evanescent.

The simplest torm of ¢, is one which is of the third order in u, being a numerical
multiple of the Jacobian of u and ¢, ; we take as this form

n—2r—1

by 1= up,— 2 w—1 Wby
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This is an invariant, and so is a solution cf the equation (as will be verified immediately
in connexion with a cognate case); and it involves the (27 + 1)th derivation of w.

As the function next in succession beyond ¢, ; we take ¢y, 4, which has already
been found. It is not difficult to see that

. 3n—4r —5 ,
u‘l—"z”l_ m—1 Y bor+1

differs from %, , , by a resoluble function.
Replacing now the quantities U,, Uy, . . . by the functions ¢, we can enunciate the
result of § 131 in the form :—
Every identical covariant, which is a function of w and its derivatives alone,
can be expressed as an algebraical function of u, Uy, Ug, ¢y, ¢, - . .
134. Example I1.—The derived invariants which are functions of O,
The form-equation for these invariants ¢ is

(s—1) a\li‘ _ .
3s(s+5)6, s6,0 =0

and in order to obtain the most general solution of this equation it is necessary to
obtain a proper number of integrals of the associated subsidiary equations

d®, dO®;  de",  de",

0 7 160, 2760, 380"

Integrals of these involving derivatives of ®; in successive orders are

A = @,

B= A0 — {6,

C=A%"; — 4A0,0"; + 22 0}
D = A®8"; — 660", + 28 0",

. When we proceed to construct the general solution of the form-equation by modifying
these integrals so that each may contain only a single constant, the right-hand sides
are the successive invariants derived from @, or are algebraically equivalent to them ;
and thus the required general value of v is

Y = function of @;, @3, B;,, .. .

The derived invariants, which arise in successive formation after @, ,, are not in their
simplest forms; they can be reduced in a manner similar to that adopted for the
MDCCCLXXXVIII.—A. 3 Q
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reduction of the identical covariants. They form, however, a complete series of
functions, that is, any invariant which is a function of ®; and derivatives of ®, can
be expressed algebraically in terms of the elements of the complete series.

As in the preceding case of identical covariants, the 2rth derived invariant is of even
grade; and the invariant @, can be replaced by v ,, (which is functionally equivalent
to it), where

Y0 = 03057 — @@V L (= 1)0,0,90,0,7 79 4 | 4 (= 1)}, {0,712,
the coefficients ), o, . . . , &, being given by the equation

_ 201 2+ 51 5!
T 2% —s! 2r—s+ 5! s+ 5! s!

Oy

The (2r + 1)th derived invariant is of odd grade; and the simplest functional
equivalent is an invariant of the third degree in ®; given by

Y300 41 = Ogliy o — % (27" +6) ®13‘!’3, ore

Similarly for the derived invariants which are functions of 0, and its derivatives
alone. The simplified functional equivalent of @, ,, is

1”,4,21‘ — ®M®M(2r) —_ Bl®iu®u(2r—1) + L "l" (__ 1)sBS@M(s)®M(%—s) + L. + (_ ])r%Br{(@“(r)}%’

where
- 2r! 2u+ 27 —1! 24 —1! .
T 2 —s! 2u+2r—s—11 2u+4s—11 s’

B

and the corresponding simplified functional equivalent of @, ,,, ; is

"4 W
o

Vigre1= 0,00 — 2 O 0 -
So far as regards the index-equation, the first of (63), for these functions, we at once
have, after substitution, the value 2u 4 2» for \ in connexion with Y,.,0» and the value
3p + 27 4 1 for A in connexion with ¥, 4, ; . ‘

It has been assumed in both of these examples that the Jacobian is an invariant ;
it is interesting to verify this in connexion with the differential equations.

135. Lwample IT1.-—The Jacobion of o derived invariant and the priminvariant.

Let ¢ be a derived invariant of ®,, and therefore a function of ©,, and its diffe-
rential coefficients alone ; let p be the degree of ¢ in ®,, and let » be its grade. Then
the index N of ¢ is

A=pp -+
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Let A, denote the operator

. o
Ay :8,5418 (2# + s — ]) @( l)%'(s)
of the form-equation, so that
A.h=0 . . . . . . ... (64);
and let v, denote the operator of the index-equation
0
VI'-=_§( f"’) @u a)(S)’
so that
v.d=N . . . . . . . . . . (65).
Since ¢ is homogeneous of degree p in the quantities ®, we have
o _Ob
2 (”);(@) 280 = P

When this is multiplied by p, and subtracted from (64), then

So00 2

so that, if we denote by II, the operator

0
I, =3 50 Y 500’

we have

I, ¢ =vd Y (11 8

which may be called the gmde-equaéion of ¢.
136. Denoting by ¢ the Jacobian of ®, and ¢, we have

b= 1O, ¢ — 26,

The index of ¢ is u + 1 4 X\, so that it has to be shown that ¢ satisfies the two
equations '

AM‘I‘ =0,
Vulp: ()\‘l";“'{" 1)‘!’§
and it follows from these that

HM‘/’=(V+1)¢"
3qQ2
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For the first of these equatidns, we have

Yo 1" ad) " aﬂb
qsm@,La@ +®“a@ + o de

and therefore

A =200, 50 +2(2;»+1)®ﬂa§+3(2 +2)6 5t

" mn a
+ @, Aua® + @, A,L uég%'l-'-
But, by (64),
Ap=0,
and, therefore,
Op_ aqi _
Ao, + 20 5 ’

0
Aué—g'+2(2f"+1)a—$’7=0’

ﬂa@ AT YC +2)-—« 0,

and so on.  Hence,
= 2u® d) 2 (2p 1 cY qS 3(2 o
,qu g ua@ + ( -+ ) MB@ + (f"+2)®na® +...
0 , O
--2@@”8(:)” 2(2{1,+1)®Ma§, —..

~zﬁ®“a§+z( +1)6, "5+zr +2)6 ;§§,+..
=2V =G . . 6D,

‘We now have -

A =pd (A,8,) + 16, (A,4) —Ap(4,0,) — N6, (A,);
and
A0, =0= A, A8, = 2u0,, A, = 2\,
so that ,
. A,L‘/} = O:

and  therefore satisfies the form-equation.
Again,
? " a‘;b g 8¢

+ 6, Vﬂag +®;Vﬂa@ +®,,, ﬂag + -
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Now, by (65),

v #‘75 = )‘(ﬁo
so that :

0 0
Vﬁé—@—i%f)—‘_ (M+0)8®Lw):x56_(i§})’

and, therefore, for all values of o,

0 0
‘Hence,

Vb= (1) 0L + (o D 0L+ (;»+3) ;:'agf»

v O
+ 0 ) O (— = 108+ (—u = 2) 6
w O
_(x+1)K #ag"'@%a@ +®»ac§;+ )
=0N4+1)d . . . e (68)

We now have

V.= pd (v.8,) + 18, (V,.$) — 8, (V,.$) — A (V.8,)
=up . u®, +u®, A+ 1)¢ =N, . \p — \p(n+1)0,
=+ p+ 1) (18,9 — \6.9)
=M\+p+ 1),

and s therefore satisfies the index-equation.

The fact that the invariant s satisfies the form-equation is the justification of the
statement made earlier (§ 181), that the.application of the Jacobian operation enables
us to obtain the successive integrals of the subsidiary equations necessary for the
construction of the general solution.

Functional Completeness of the Set of Concomatants.

187. A set of concomitants will be considered functionally complete when any
concomitant whatever can be expressed as an algebraical function of members of the
set ; and this we shall prove to hold of the aggregate of invariants and covariants
which have been obtained in Sections II., II1., V.

Let a concomitant ¢ have as elements entering into its expression u, u', w', .. .,
u?, where 7 is less than n ; v, v\, . . ., 07, for values 2, 3,..., n — 1 of p, where
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r, 18 less than n!/p!'n —p!; 6, @', ..., 6%, for values 3, 4,..., n of u, where
there is no restriction on the value of s,. Such a concomitant ¢ satisfies a form-
equation given by (xxvil.); the equation (xxvi) is satisfied when the form of ¢ is
known, the index alone being therefrom determined.

Now, in the form-equation the number of partial differential coeflicients of ¢
(including o¢/ou, . . ., 0¢/ov,, . .., 0¢/00,, ..., which do not explicitly occur, but
which may be considered as present with zero algebraical coefficients) is

7+ 1 from the terms implying differentiation dependent on w,
7,4+ 1 e
e P

Hence the total number of partial differential coefficients of ¢ is
p=n—1 n=n
rb 1+ S ) S 1)

all the partial differential coefficients in the form-equation, with regard to quantities
other than those supposed to occur in ¢, vanish.

In order to obtain the most general solution possible as a value of ¢ involving the
uantities which occur, we form, according to the usual rule, the necessary subsidiary
equations by means of fractions involving differentials ; the number of these fractions,
excluding the fraction d¢/0, is the same as the number of partial differential
coeflicients of ¢ in the linear equation, and, therefore, the number of independent
subsidiary equations, being one less than the number of fractions, is

N=rt+" 3 (r+1) 45 (s+1)

3

S
3

"

p=n-—1
=r+2n—4+4+ 3 7+
p=2

M

w "
To construct the general function ¢ we therefore require N independent integrals of
these subsidiary equations.

Now of invariantive functions, which have the properties of being independent of
one another and of involving in the aggregate all the specified quantities and
individually at least one of the quantities, and from each of which, on account of
these properties, independent integrals of the present subsidiary equations can be
constructed after the manner of §§ 131 and 134, we have the following :—



DERIVATIVES ASSOCIATED WITH LINEAR DIFFERENTIAL EQUATIONS. 487

(i) The # identical covariants in u, given by u, U, U, ..., U, (or‘their
- functicnal equivalents, reduced as in §§ 132, 133).

(i) The 7, identical covariants in v,, given by v,, V, 4, V.4, ..., V,, (or their
similarly reduced functional equivalents). This is the case for each of the
associate variables vy, v5, . . ., Vy_1.

(iii) The s, derived invariants involving ®, alone and given by ®,, ©,,, ©,,,
bus > Puse This is the case for each of the priminvariants @, @,
v 0,

(iv) The mutually independent bilinear Jacobians; as a set of algebraically
independent functions, retained after the indications of §§ 36, 72, we may
take the Jacobian of ®; with each of the quantities u, vy, . .., v,_;, O,

.+, ©,. The total number of these is 14 (n — 2) + (» — 3), e, it is
2n — 4.

Hence the total number of algebraically independent concomitants, ‘involving the
specified quantities and obtained by our earlier methods, is

pP=n—

1 =n
=r4+ 3 7'2,+”2‘, s, + 2n — 4
p=2 ,;,.—:‘3
=N;

and from each of them an integral can be constructed, which is independent of all the
other integrals. ‘

From the first three of the classes we have already had examples of the method of
construction of integrals ; as an example of the last class, we may take the subsidiary
equation '

Previous integrals are v = A, ©, =B, so that an integral of the equation which
appears is '

2uBvw + {(n — 1) A®, = C,
that is,

2u8,u + (n — 1) u®, = C,

or, what is the same thing,

0. (u) == C.

It may also be remarked that, while the class (i) of functions constitutes the set of
integrals derived from the u fractions alone in the subsidiary equations, the class (ii)
constitutes the separate sets from the fractions in each of the other associate
variables taken individually and alone, and the class (iii) constitutes the set from the
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fractions in the priminvariants alone, the part played by the class (iv) is in making
equal to one another the individual fractions in these three principal sets.

We thus have, by means of the functions previously obtained, the full number of
subsidiary integrals necessary to construct the most general solution of the form-
equation ; and it follows that any concomitant can be algebraically expressed in terms
of the concomitants previously given.

Hence the aggregate of the concomitants (or their simplified algebraical equivalents),
obtainable by the quadriderivative and Jacobian operations from the priminvariants
and the dependent variables, is functionally complete.

Lomatation in the Number of Identical Covariants.

188. This for particular cases has already (§§ 76-78) been indicated; without
entering at present on the details of the general case, it will be sufficient to obtain
the general result, which, by means of the result of § 132, can be simplified. In fact,
U, of grade n, can be replaced by a function the first term of which is either wu® or
v*u, according as the grade n is even or odd; and our present purpose will be
effected by showing that «*»®, which will include both cases, is covariantive. For,
since the differential equation

n!

r=n
(n) (e—7) —
) U =0
+ 753 7! n—'r!Qr
is permanently true, we shall have
u? A S Q’ =7

=3 Pl n—r!

a covariant, if u*u® be a covariant. Now, as has been implicitly proved in the last
paragraph, this covariant is expressible in terms of invariants and covariants already
obtained, the identical covariant of highest grade in such an expression being U,_,;
and the expression is therefore an equivalent for »*u®. On the other hand, viewed
as an identical covariant, w*u® differs from U, (or wU,, in the case of n even) by an
aggregate of terms each of which can be resolved into factors of lower grade; and
therefore, since the aggregate is covariantive, on the hypothesis of the covariantive
property of u?u®, it is expressible in terms of identical covariants of lower grade. A
comparison of the two expressions thus obtained for w*u® gives U, in terms of
covariants of lower grade, so that U, is reducible; and all succeeding identical
covariants are also reducible.



DERIVATIVES ASSOCIATED WITH LINEAR DIFFERENTIAL EQUATIONS. 489

It is necessary, then, to show that »?u® is covariantive; if it be so, it must have
its index equal to n — § (n — 1) = L (3 — n), and so the relation

dE\FG=n)
201 () aem o2 (12)
wu = 9y <0Zz)

must be satisfied. Now, by (58), we have

W = {14} (0 + 1) e} ),
and therefore, by (57),
) = {14 (3 = n) ez}

. d E iBG—mn
— 7)277(71) <;l;> ,

showing the covariantive nature of the function.
A similar conclusion as to limitation of number holds with regard to the identical
covariants in the associate variables.

MDCCCLXXXVIIT,~— A, 3n



